Abstract

The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical response of wurtzite and zinc blende GaP nanowire arrays

Mahtab Aghaeipour, Nicklas Anttu, Gustav Nylund, Alexander Berg, Sebastian Lehmann, and Mats-Erik Pistol
Opt. Express 23(23) 30177-30187 (2015)

Efficient light management in vertical nanowire arrays for photovoltaics

Nicklas Anttu and H. Q. Xu
Opt. Express 21(S3) A558-A575 (2013)

Light absorption and emission in nanowire array solar cells

Jan Kupec, Ralph L. Stoop, and Bernd Witzigmann
Opt. Express 18(26) 27589-27605 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
    [Crossref] [PubMed]
  2. S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
    [Crossref]
  3. L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
    [Crossref]
  4. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  5. B. Wang, E. Stevens, and P. W. Leu, “Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells,” Opt. Express 22(S2), A386–A395 (2014).
    [Crossref] [PubMed]
  6. X. Ziang, W. Wei, Q. Laixiang, X. Wanjin, and G. G. Qin, “Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures,” Opt. Express 21(15), 18043–18052 (2013).
    [Crossref] [PubMed]
  7. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
    [Crossref]
  8. J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17(12), 10399–10410 (2009).
    [Crossref] [PubMed]
  9. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
    [Crossref] [PubMed]
  10. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
    [Crossref]
  11. Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
    [Crossref]
  12. M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
    [Crossref]
  13. M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
    [Crossref]
  14. B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
    [Crossref] [PubMed]
  15. N. Anttu, “Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays,” Opt. Lett. 38(5), 730–732 (2013).
    [Crossref] [PubMed]
  16. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
    [Crossref] [PubMed]
  17. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3), A558–A575 (2013).
    [Crossref] [PubMed]
  18. N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M.-E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
    [Crossref] [PubMed]
  19. M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
    [Crossref] [PubMed]
  20. M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
    [Crossref]
  21. C. Lundgren, R. Lopez, J. Redwing, and K. Melde, “FDTD modeling of solar energy absorption in silicon branched nanowires,” Opt. Express 21(S3), A392–A400 (2013).
    [Crossref] [PubMed]
  22. N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
    [Crossref]
  23. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
    [Crossref] [PubMed]
  24. Y. Wu, H. Yan, and P. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19(2), 197–202 (2002).
    [Crossref]
  25. N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
    [Crossref]
  26. M. Razeghi, “Short-wavelength solar-blind detectors - Status, prospects, and markets,” Proc. IEEE 90(6), 1006–1014 (2002).
    [Crossref]
  27. T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
    [Crossref]
  28. A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
    [Crossref]
  29. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
    [Crossref]
  30. C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
    [Crossref]
  31. L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
    [Crossref] [PubMed]
  32. H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
    [Crossref]
  33. E. Cicek, Z. Vashaei, E. K. Huang, R. McClintock, and M. Razeghi, “AlxGa11-xN-based deep-ultraviolet 320×256 focal plane array,” Opt. Lett. 37, 896–898 (2012).
  34. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [Crossref]
  35. More information available at the home page of NanoDim at www.nanodim.net
  36. J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
    [Crossref] [PubMed]
  37. N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
    [Crossref] [PubMed]
  38. O. J. Glembocki and H. Piller, “Indium Phosphide (InP),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985), 1, pp. 508–5016.
  39. M. S. Gudiksen, J. Wang, and C. M. Lieber, “Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires,” J. Phys. Chem. B 106(16), 4036–4039 (2002).
    [Crossref]

2014 (4)

B. Wang, E. Stevens, and P. W. Leu, “Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells,” Opt. Express 22(S2), A386–A395 (2014).
[Crossref] [PubMed]

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

2013 (8)

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

C. Lundgren, R. Lopez, J. Redwing, and K. Melde, “FDTD modeling of solar energy absorption in silicon branched nanowires,” Opt. Express 21(S3), A392–A400 (2013).
[Crossref] [PubMed]

X. Ziang, W. Wei, Q. Laixiang, X. Wanjin, and G. G. Qin, “Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures,” Opt. Express 21(15), 18043–18052 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

N. Anttu, “Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays,” Opt. Lett. 38(5), 730–732 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3), A558–A575 (2013).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M.-E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

2012 (5)

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
[Crossref]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

E. Cicek, Z. Vashaei, E. K. Huang, R. McClintock, and M. Razeghi, “AlxGa11-xN-based deep-ultraviolet 320×256 focal plane array,” Opt. Lett. 37, 896–898 (2012).

2011 (7)

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

2010 (3)

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

2009 (3)

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17(12), 10399–10410 (2009).
[Crossref] [PubMed]

2008 (1)

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

2005 (1)

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

2002 (3)

M. Razeghi, “Short-wavelength solar-blind detectors - Status, prospects, and markets,” Proc. IEEE 90(6), 1006–1014 (2002).
[Crossref]

Y. Wu, H. Yan, and P. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19(2), 197–202 (2002).
[Crossref]

M. S. Gudiksen, J. Wang, and C. M. Lieber, “Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires,” J. Phys. Chem. B 106(16), 4036–4039 (2002).
[Crossref]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Åberg, I.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Abrand, A.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Abstreiter, G.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Ahn, J.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Alarcon-Lladó, E.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Anttu, N.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu, “Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays,” Opt. Lett. 38(5), 730–732 (2013).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M.-E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3), A558–A575 (2013).
[Crossref] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Asoli, D.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Auer, E.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Aytur, O.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Bakkers, E. P. A. M.

Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
[Crossref]

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Bando, Y.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Bao, J.

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Barkad, H. A.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

BenMoussa, A.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

BenMoussa, B.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Biyikli, N.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Bolsee, D.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Borgström, M.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M.-E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Bracher, G.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Capasso, F.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Chang, S. J.

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

Chang, S. P.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

Chiu, C. J.

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

Cho, D. I.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Chong, Y. M.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Cicek, E.

Conesa-Boj, S.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Dahal, R.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Dalmau-Mallorquí, A.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

De Jaeger, J. C.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Demichel, O.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Dhar, N. K.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Dick, K. A.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

Diedenhofen, S. L.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Du, X. L.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Ek, M.

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Fang, X.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Fiegna, C.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Finley, J. J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Fontana, Y.

Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
[Crossref]

Fontcuberta i Morral, A.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Fukui, T.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gautam, U. K.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Gilchrist, K. H.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Giordanengo, B.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Golberg, D.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Gómez Rivas, J.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Goto, H.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Grego, S.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Grzela, G.

Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
[Crossref]

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Gu, C. Z.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Gu, L.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Gudiksen, M. S.

M. S. Gudiksen, J. Wang, and C. M. Lieber, “Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires,” J. Phys. Chem. B 106(16), 4036–4039 (2002).
[Crossref]

Haenen, K.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Hara, S.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Heiss, M.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Hermans, C.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Heurlin, M.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M.-E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Hiruma, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Hochedez, J. F.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Hong, S. J.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Hou, Y. N.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Hsueh, H. T.

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

Hsueh, T. J.

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

Huang, E. K.

Huang, G. J.

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

Huang, N.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Iqbal, A.

Islam, M. S.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Janssen, O. T. A.

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Jiang, H. X.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Jung, S. W.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Kartaloglu, T.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Katzenmeyer, A. M.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Kimukin, I.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Kobayashi, N. P.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Koblmüller, G.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Koide, Y.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Kroth, U.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Kupec, J.

Laixiang, Q.

Laubis, C.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Lee, M. H.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Lee, S.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Lehmann, S.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

Leu, P. W.

Li, L.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Liang, H. L.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Liang, S.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Liao, M.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Lieber, C. M.

M. S. Gudiksen, J. Wang, and C. M. Lieber, “Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires,” J. Phys. Chem. B 106(16), 4036–4039 (2002).
[Crossref]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

Lin, J. Y.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Lindgren, D.

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Lopez, R.

Lugstein, A.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Lundgren, C.

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Matteini, F.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Mayer, B.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

McClintock, R.

Mei, Z. X.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Melde, K.

Mergenthaler, K.

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Michallon, J.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Morkötter, S.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Mortet, V.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Motohisa, J.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Müller, K.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Müller, S.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Nayak, A. P.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Nosaki, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Oh, J.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Ozbay, E.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Park, S.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Pistol, M. E.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Pistol, M.-E.

Povinelli, M. L.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

Qin, G. G.

Razeghi, M.

E. Cicek, Z. Vashaei, E. K. Huang, R. McClintock, and M. Razeghi, “AlxGa11-xN-based deep-ultraviolet 320×256 focal plane array,” Opt. Lett. 37, 896–898 (2012).

M. Razeghi, “Short-wavelength solar-blind detectors - Status, prospects, and markets,” Proc. IEEE 90(6), 1006–1014 (2002).
[Crossref]

Redwing, J.

Richter, M.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Rivas, J. G.

Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
[Crossref]

Ronning, C.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Rudolph, D.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Rüffer, D.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Russo-Averchi, E.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Samuelson, L.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu, A. Iqbal, M. Heurlin, L. Samuelson, M. T. Borgström, M.-E. Pistol, and A. Yartsev, “Reflection measurements to reveal the absorption in nanowire arrays,” Opt. Lett. 38(9), 1449–1451 (2013).
[Crossref] [PubMed]

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Sangiorgi, E.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Schnell, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Scholze, F.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Schühle, U.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Semenihin, I.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Soltani, A.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Stevens, E.

Stoop, R. L.

Storm, K.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

Talin, A. A.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Tomioka, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Treu, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Tut, T.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Tütüncüoglu, G.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Unlu, M. S.

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Vashaei, Z.

Vj, L.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Wallenberg, L. R.

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

Wang, B.

Wang, J.

M. S. Gudiksen, J. Wang, and C. M. Lieber, “Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires,” J. Phys. Chem. B 106(16), 4036–4039 (2002).
[Crossref]

Wang, S. Y.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

Wanjin, X.

Wei, W.

Weng, W. Y.

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

Winnerl, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17(12), 10399–10410 (2009).
[Crossref] [PubMed]

Wu, P. M.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, H. Yan, and P. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19(2), 197–202 (2002).
[Crossref]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3), A558–A575 (2013).
[Crossref] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Yan, H.

Y. Wu, H. Yan, and P. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19(2), 197–202 (2002).
[Crossref]

Yang, P.

Y. Wu, H. Yan, and P. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19(2), 197–202 (2002).
[Crossref]

Yartsev, A.

Ye, D. Q.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Yoo, H. J.

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Yu, R. C.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Zanuccoli, M.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Zhai, T.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Zhang, Q. H.

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

Zhang, W. J.

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

Ziang, X.

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

ACS Nano (1)

S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core-shell inP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Appl. Phys. Lett. (3)

M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

H. L. Liang, Z. X. Mei, Q. H. Zhang, L. Gu, S. Liang, Y. N. Hou, D. Q. Ye, C. Z. Gu, R. C. Yu, and X. L. Du, “Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 98(22), 221902 (2011).
[Crossref]

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Diamond Related Materials (1)

A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, and J. F. Hochedez, “Recent developments of wide-bandgap semiconductor based UV sensors,” Diamond Related Materials 18(5-8), 860–864 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A perspective on nanowire photodetectors: Current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett. 22(10), 709–711 (2010).
[Crossref]

IEEE Sens. J. (1)

C. J. Chiu, W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “Ta2O5 solar-blind photodetectors,” IEEE Sens. J. 11(10), 2372–2373 (2011).
[Crossref]

J. Comput. Electron. (1)

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

J. Opt. (1)

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

J. Phys. Chem. B (1)

M. S. Gudiksen, J. Wang, and C. M. Lieber, “Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires,” J. Phys. Chem. B 106(16), 4036–4039 (2002).
[Crossref]

Nano Lett. (3)

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012).
[Crossref] [PubMed]

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, M. E. Pistol, and M. T. Borgström, “Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires,” Nano Lett. 11(6), 2286–2290 (2011).
[Crossref] [PubMed]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, and M. E. Pistol, “Crystal-phase dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14(10), 5650–5655 (2014).
[Crossref] [PubMed]

Nano Res. (1)

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Nanoscale (1)

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3(3), 1120–1126 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: Growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Nat Commun (1)

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nat Commun 4, 2931 (2013).
[Crossref] [PubMed]

Nature (1)

M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature 492(7427), 90–94 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (2)

N. Anttu and H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Y. Fontana, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, “Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy,” Phys. Rev. B 86(24), 245303 (2012).
[Crossref]

Proc. IEEE (1)

M. Razeghi, “Short-wavelength solar-blind detectors - Status, prospects, and markets,” Proc. IEEE 90(6), 1006–1014 (2002).
[Crossref]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: Invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Solid-State Electron. (1)

T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current,” Solid-State Electron. 49(1), 117–122 (2005).
[Crossref]

Top. Catal. (1)

Y. Wu, H. Yan, and P. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19(2), 197–202 (2002).
[Crossref]

Other (3)

O. J. Glembocki and H. Piller, “Indium Phosphide (InP),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985), 1, pp. 508–5016.

More information available at the home page of NanoDim at www.nanodim.net

S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, ”Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” Proceedings of IEEE conference on Micro Electro Mechanical Systems (MEMS) (Paris2012), pp. 1364–1367.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) 15° tilted SEM top view image of a periodic InP nanowire array fabricated by metal-organic vapor phase epitaxy. (b) Schematics of a vertical nanowire array with period (P) and nanowires of diameter (D) and length (L) together with indicated interaction of the light with a nanowire array. Here, light is incident from the top, and part of the incident light is absorbed in the nanowires. Note that in the analysis in this work, we assume that the reflection occurring at the top air-superstrate/nanowire interface is negligible since the nanowires cover only a small fraction of the substrate surface. Instead, we assume that only the reflection from the bottom nanowire/substrate interface contributes to the total reflectance (R) [18]. Thus, the reflected light makes a double pass through the nanowire array where it is partially absorbed by the nanowires.

Fig. 2
Fig. 2

(a) Extracted absorptance and (b) measured reflectance spectra of InP nanowire arrays for a fixed length (L ≈ 1.9-2.4 µm) and different diameters of the nanowires. (c) Wavelength position of the long-wavelength absorption peak of InP nanowire arrays as a function of diameter and length.

Fig. 3
Fig. 3

(a) Extracted absorptance as determined from measured reflectance spectra of InP nanowire arrays shown in (b) for a fixed diameter (D ≈80 nm) and different lengths (L).

Fig. 4
Fig. 4

(a) Absorptance spectra in nanowire arrays obtained by modeling. Here, red shows modeled absorptance spectra and black depicts absorptance spectra obtained from modeled reflectance spectra under the dual-pass approximation where light is reflected at the nanowire/substrate interface and partially absorbed in the nanowires (see Fig. 1(b)). (b) Measured absorptance spectra as a function of nanowire diameter. The spectra in (a) and (b) have been shifted vertically for clarity. The spectrum for the largest diameter (D/L = 82/1100 nm) is not shifted and each following spectrum is shifted down by an absolute value of 15%. (c) Wavelength position of the main peak (the long-wavelength absorption peak) as a function of nanowire diameter.

Fig. 5
Fig. 5

(a) Tabulated refractive index of zinc-blende InP [38]. (b) Peak wavelength λpeak = cRe[n(λpeak)]D for zinc-blende InP, calculated with c = 1.41 as determined from modeling.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A = 1 R T
T ( 1 R Sub ) R R Sub

Metrics