Abstract

We propose and analyze an efficient way to enhance four-wave mixing (FWM) signals in a four-subband semiconductor quantum well via Fano-type interference. By using Schrödinger-Maxwell formalism, we derive explicitly analytical expressions for the input probe pulse and the generated FWM field in linear regime under the steady-state condition. With the aid of interference between two excited subbands tunneling to the common continuum, the efficiency to generate FWM field is found to be significantly enhanced, up to 35%. More interestingly, a linear growth rate in the FWM efficiency is demonstrated as the strength of Fano-type interference increases in presence of the continuum states, which can be maintained for a certain propagation distance (i.e., 50μm).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced grating in asymmetric quantum wells via Fano interference

Fengxue Zhou, Yihong Qi, Hui Sun, Dijun Chen, Jie Yang, Yueping Niu, and Shangqing Gong
Opt. Express 21(10) 12249-12259 (2013)

Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure

Xiangying Hao, Jing Wu, and Ying Wang
J. Opt. Soc. Am. B 29(3) 420-428 (2012)

Enhanced four-wave mixing in quantum cascade semiconductor optical amplifier

Baktash Hekmat, Vahid Ahmadi, and Elham Darabi
Appl. Opt. 52(12) 2828-2833 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [Crossref]
  2. M. Fleischhauer, A. Imamoglu, and J.P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  3. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
    [Crossref] [PubMed]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
    [Crossref]
  5. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
    [Crossref]
  6. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
    [Crossref] [PubMed]
  7. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence,” Opt. Lett. 28, 96–98 (2003).
    [Crossref] [PubMed]
  8. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29, 2294–2296 (2004).
    [Crossref] [PubMed]
  9. W. X. Yang, J. M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
    [Crossref]
  10. W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
    [Crossref]
  11. W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
    [Crossref]
  12. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
    [Crossref] [PubMed]
  13. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
    [Crossref] [PubMed]
  14. J. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007)
    [Crossref]
  15. W. X. Yang, J. M. Hou, and R.-K. Lee, “Highly efficient four-wave mixing via intersubband transitions in In-GaAs/AlAs coupled double quantum well structures,” J. Mod. Opt. 56, 716–721 (2009).
    [Crossref]
  16. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
    [Crossref] [PubMed]
  17. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000), pp. 5–18.
  18. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
    [Crossref]
  19. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
    [Crossref]
  20. X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
    [Crossref]
  21. X. Hao, J. Li, and X. Yang, “Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure,” Opt. Commun. 282, 3339–3344 (2009).
    [Crossref]
  22. H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
    [Crossref]
  23. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
    [Crossref] [PubMed]
  24. T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
    [Crossref]
  25. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
    [Crossref] [PubMed]
  26. M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
    [Crossref]
  27. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [Crossref]

2013 (1)

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
[Crossref]

2011 (1)

W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[Crossref]

2010 (1)

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

2009 (3)

X. Hao, J. Li, and X. Yang, “Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure,” Opt. Commun. 282, 3339–3344 (2009).
[Crossref]

W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Highly efficient four-wave mixing via intersubband transitions in In-GaAs/AlAs coupled double quantum well structures,” J. Mod. Opt. 56, 716–721 (2009).
[Crossref]

2008 (2)

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[Crossref]

2007 (2)

J. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007)
[Crossref]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[Crossref] [PubMed]

2005 (3)

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J.P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (4)

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
[Crossref] [PubMed]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29, 2294–2296 (2004).
[Crossref] [PubMed]

2003 (1)

2000 (2)

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[Crossref]

1999 (2)

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[Crossref]

1997 (2)

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
[Crossref]

1995 (1)

1989 (1)

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[Crossref] [PubMed]

Andrews, A. M.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Beck, M.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

Behroozi, C.H.

L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[Crossref]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000), pp. 5–18.

Chen, A. X.

W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[Crossref]

Cronin-Golomb, M.

Deng, L.

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[Crossref]

Donoghue, J.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[Crossref]

Dynes, J. F.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

Faist, J.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

Fan, S.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J.P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Frogley, M. D.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Gong, S.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
[Crossref]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[Crossref] [PubMed]

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
[Crossref]

Hagley, E. W.

Hao, X.

X. Hao, J. Li, and X. Yang, “Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure,” Opt. Commun. 282, 3339–3344 (2009).
[Crossref]

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[Crossref] [PubMed]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[Crossref]

Helm, M.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Hemmer, P. R.

Hou, J. M.

W. X. Yang, J. M. Hou, and R.-K. Lee, “Highly efficient four-wave mixing via intersubband transitions in In-GaAs/AlAs coupled double quantum well structures,” J. Mod. Opt. 56, 716–721 (2009).
[Crossref]

W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J.P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
[Crossref]

Jin, S.

Katz, D. P.

Kumar, P.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[Crossref]

LaRocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Lee, R.-K.

W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[Crossref]

W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Highly efficient four-wave mixing via intersubband transitions in In-GaAs/AlAs coupled double quantum well structures,” J. Mod. Opt. 56, 716–721 (2009).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[Crossref]

Li, J.

X. Hao, J. Li, and X. Yang, “Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure,” Opt. Commun. 282, 3339–3344 (2009).
[Crossref]

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

J. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007)
[Crossref]

Li, R.

Lin, Y. Y.

W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[Crossref]

Liu, H. C.

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000), pp. 5–18.

Liu, J.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

Marangos, J.P.

M. Fleischhauer, A. Imamoglu, and J.P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Matsko, A. B.

Müller, T.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
[Crossref]

Niu, Y.

Novikova, I.

Parz, W.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
[Crossref]

Paspalakis, E.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

Payne, M. G.

Pfeiffer, L. N.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

Phillips, C. C.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

Schartner, S.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
[Crossref]

Schneider, H.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Serapiglia, G. B.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

Shahriar, M. S.

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Sirtori, C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

Song, P.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

Stehr, D.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Strasser, G.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
[Crossref]

Sun, H.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
[Crossref]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[Crossref] [PubMed]

Unterrainer, K.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
[Crossref]

Vodopyanov, K. L.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

Wagner, M.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[Crossref]

Welch, G. R.

West, K. W.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

Winnerl, S.

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Wu, Y.

W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29, 2294–2296 (2004).
[Crossref] [PubMed]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
[Crossref] [PubMed]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

Yang, W. X.

W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[Crossref]

W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Highly efficient four-wave mixing via intersubband transitions in In-GaAs/AlAs coupled double quantum well structures,” J. Mod. Opt. 56, 716–721 (2009).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[Crossref]

Yang, X.

X. Hao, J. Li, and X. Yang, “Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure,” Opt. Commun. 282, 3339–3344 (2009).
[Crossref]

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Zhang, H.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
[Crossref]

Zubairy, M. S.

Appl.Phys. Lett. (1)

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl.Phys. Lett. 70, 3455–3457 (1997).
[Crossref]

J. Mod. Opt. (1)

W. X. Yang, J. M. Hou, and R.-K. Lee, “Highly efficient four-wave mixing via intersubband transitions in In-GaAs/AlAs coupled double quantum well structures,” J. Mod. Opt. 56, 716–721 (2009).
[Crossref]

Nature (1)

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[Crossref]

Nature (London) (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[Crossref]

Opt. Commun. (1)

X. Hao, J. Li, and X. Yang, “Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure,” Opt. Commun. 282, 3339–3344 (2009).
[Crossref]

Opt. Lett. (5)

Phys. Lett. A (1)

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
[Crossref]

Phys. Rev. A (4)

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

W. X. Yang, J. M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[Crossref]

W. X. Yang, J. M. Hou, Y. Y. Lin, and R.-K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009).
[Crossref]

W. X. Yang, A. X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[Crossref]

Phys. Rev. B (3)

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70, 155324 (2004).
[Crossref]

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013).
[Crossref]

J. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007)
[Crossref]

Phys. Rev. Lett. (6)

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[Crossref] [PubMed]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “Ac stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005).
[Crossref] [PubMed]

M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett. 105, 167401 (2010).
[Crossref]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. LaRocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[Crossref] [PubMed]

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[Crossref] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J.P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Other (1)

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000), pp. 5–18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic band diagram of our asymmetric double SQW structure with a four-subband |j〉 (j = 1 − 4) configuration. Here, Fano-type interference occurs in the optical absorption from the ground state |1〉 to two continuum resonant states |3〉 and |4〉. Related energy levels and the corresponding wave functions are denoted by dashed- and solid-lines, respectively. The SQW structure interacts with two continuous-wave (cw) pump lasers (frequencies ωc1, ωc2 and Rabi frequencies 2Ωc1, 2Ωc2) and a probe pulse (frequency ωp and Rabi frequency 2Ω p ), in order to generate a new FWM pulse field (frequency ωm and Rabi frequency 2Ω m ).

Fig. 2
Fig. 2

Amplitudes of the probe pulse and the generated FWM field shown as a function of the depth z when penetrating into the SQW system (a) without including continuum states: γ3l = γ4l = 1meV and p = 0; (b) with including continuum states: γ3l = 1.58meV, γ4l = 1.5meV, and p = 0.83. Other parameters used are γ2 = 2.36 × 10−6 μeV, γ3d = 0.32meV, γ4d = 0.3meV, |Ωc1| = 20 meV, |Ωc2| = 20 meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103μm−1meV, respectively.

Fig. 3
Fig. 3

The ratio between absorption coefficients α/α+ for two different modes shown as a function of the amplitude |Ωc2| in the cw control field c2: (a) for different control field amplitudes |Ωc1| in the absence of the continuum state and (b) for different case, i.e., without or with including the continuum sate for a fixed value of |Ωc1| = 20 meV. Without continuum states (p = 0): γ3l = γ4l = 1meV; with continuum states (p = 0.83): γ3l = 1.58meV and γ4l = 1.5meV. Other parameters used are γ2 = 2.36 × 10−6 μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103μm−1meV, respectively.

Fig. 4
Fig. 4

Relative group velocity Vg/c versus the cw amplitude Ωc2 for different pump fields |Ωc1|, (a) without including continuum states: γ3l = γ4l = 1meV and p = 0; and (b) with including continuum states: γ3l = 1.58meV, γ4l = 1.5meV, and p = 0.83. Other parameters used are γ2 = 2.36 × 10−6μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103μm−1meV, respectively.

Fig. 5
Fig. 5

FWM conversion efficiency ρ versus the amplitude |Ωc2| for different cw pump fields: |Ωc1| = 15meV, |Ωc1| = 20meV, |Ωc1| = 25meV, (a) without including continuum states: γ3l = γ4l = 1meV and p = 0; and (b) with including continuum states: γ3l = 1.58meV, γ4l = 1.5meV, and p = 0.83. Other parameters used are L = 6μm, γ2 = 2.36 × 10−6μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103 μm−1meV, respectively.

Fig. 6
Fig. 6

The conversion efficiency ρ for the generated FWM field as a function of the amplitude of two cw pump fields (|Ωc1| and |Ωc2|) without including the continuum states. Other parameters used are p = 0, L = 6 μm, γ2 = 2.36 × 10−6μeV, γ3l = γ4l = 1meV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103 μm−1meV, respectively.

Fig. 7
Fig. 7

(Color online) The conversion efficiency ρ for the generated FWM field as a function of the strength of the Fano-type interference p for the different amplitudes of two pump fields in presence of the continuum states. Other parameters used are L = 6μm, γ2 = 2.36 × 10−6 μeV, γ3l = 1.58meV, γ4l = 1.5meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103μm−1meV, respectively.

Fig. 8
Fig. 8

Surface plot of the FWM conversion efficiency ρ as a function of the normalized time t/τ and the propagation distance z for (a) without including continuum states: γ3l = γ4l = 1meV and p = 0; and (b) with including continuum states: γ3l = 1.58meV, γ4l = 1.5meV, and p = 0.83. Other parameters used are |Ωc1| = |Ωc2| = 20 meV, γ2 = 2.36 × 10−6 μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δ p = Δc2 = 0, and κm = κp = 9.6 × 103μm−1meV, respectively.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

H int I = Δ c 1 | 2 2 | + Δ p | 3 3 | + Δ c 2 | 4 4 | Ω p e i k p r | 3 1 | + Ω c 1 e i k c 1 r | 3 2 | + Ω c 2 e i k c 2 r | 4 2 | + Ω m e i k m r | 4 1 | + H . c . ) ,
i A 1 t = Ω p * A 3 Ω m * e i δ k r A 4 ,
i A 2 t = Δ c 1 A 2 i γ 2 A 2 Ω c 1 * A 3 Ω c 2 * A 4 ,
i A 3 t = Δ p A 3 i γ 3 A 3 Ω p A 1 Ω c 1 A 2 + i ζ A 4 ,
i A 4 t = Δ c 2 A 4 i γ 4 A 4 Ω c 2 A 2 Ω m e i δ k r A 1 + i ζ A 3 .
Ω p z + 1 c Ω p t = i κ p A 3 A 1 * ,
Ω m z + 1 c Ω m t = i κ m A 4 A 1 * ,
A j ( t ) = 1 2 π a j ( ω ) exp ( i ω t ) d ω , j = 2 , 3 , 4
Ω p , m ( t ) = 1 2 π Λ p , m ( ω ) exp ( i ω t ) d ω ,
( ω Δ c 1 + i γ 2 ) a 2 + Ω c 1 * a 3 + Ω c 2 * a 4 = 0 ,
( ω Δ p + i γ 3 ) a 3 + Ω c 1 a 2 i ζ a 4 = Λ p ,
( ω Δ c 2 + i γ 4 ) a 4 + Ω c 2 a 2 i ζ a 3 = Λ m ,
Λ p z i ω c Λ p = i κ p a 3 a 1 * ,
Λ m z i ω c Λ m = i κ m a 4 a 1 * ,
a 2 = i ζ Ω c 1 * Λ m + ( ω Δ c 2 + i γ 4 ) Ω c 1 * Λ p + i ζ Ω c 2 * Λ p + ( ω Δ p + i γ 3 ) Ω c 2 * Λ m D ( ω ) ,
a 3 = D P ( ω ) D ( ω ) Λ p + D 1 ( ω ) D ( ω ) Λ m ,
a 4 = D m ( ω ) D ( ω ) Λ m + D 2 ( ω ) D ( ω ) Λ P .
Λ p ( z , ω ) = Λ p ( 0 , ω ) ( U + ( ω ) e i z K + ( ω ) U ( ω ) e i z K ( ω ) ) ,
Λ m ( z , ω ) = Λ p ( 0 , ω ) S ( ω ) ( e i z K ( ω ) e i z K + ( ω ) ) ,
K ± ( ω ) = ω c D m ( ω ) κ m + D p ( ω ) κ p ± G ( ω ) 2 D ( ω ) = K ± ( 0 ) + K ± ( 1 ) ( ω ) + O ( ω 2 ) ,
U ± ( ω ) = D p ( ω ) κ p D m ( ω ) κ m ± G ( ω ) 2 G ( ω ) = U ± ( 0 ) + O ( ω ) ,
S ( ω ) = κ m D 2 ( ω ) G ( ω ) = S ( 0 ) + O ( ω ) ,
Ω p , m ( z , t ) = 1 2 π exp ( i ω t ) Λ p 1 , p 2 ( z , ω ) d ω ,
Ω p ( z , t ) = Ω p ( 0 , η + ) U + ( 0 ) e i z K + ( 0 ) Ω p ( 0 , η ) U ( 0 ) e i z K ( 0 ) ,
Ω m ( z , t ) = S ( 0 ) ( Ω p ( 0 , η ) e i z K ( 0 ) Ω p ( 0 , η + ) e i z K + ( 0 ) ) .
Ω p ( z , t ) = Ω p ( 0 , t z / V g ) U ( 0 ) e i z β z α ,
Ω m ( z , t ) = S ( 0 ) Ω p ( 0 , t z / V g ) e i z β z α ,
ρ = ( E m E p ) 2 = | μ 31 | 2 | μ 41 | 2 κ m 2 ( B ) 2 4 κ m κ p ( B ) 2 + ( A ) 2 e 2 α L ,

Metrics