Abstract

In this paper, we presented highly efficient reflective cross polarization converters based on metamaterials operating in the infrared regime, which are composed of a dielectric spacer sandwiched between slotted L-shaped metallic nanoantennas and a ground plane. The proposed polarization converters can convert a linearly polarized wave to its cross polarized wave with high polarization conversion ratio (> 0.95) over multiple / broad frequency bands. The resulting multi-band and broadband operations are induced by the localized mode hybridizations between the slot and the original metallic nanoantenna. Furthermore, the performance of the proposed converters under different incident angles is also explored. It is found that the first broad band (or the first two resonant frequencies) of the proposed broadband (or multi-band) converters appears to be independent of the incident angle (up to 47°).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial

Jianfeng Zhu, Shufang Li, Li Deng, Chen Zhang, Yang Yang, and Hongbo Zhu
Opt. Mater. Express 8(5) 1164-1173 (2018)

Triple-band cross-polarization converter based on an ultra-thin graphene-integrated metasurface

Zhifei Yao, Yueke Wang, Mengjia Lu, and Chunyang Zhang
J. Opt. Soc. Am. B 36(1) 7-11 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  4. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
    [Crossref] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  6. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  7. J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
    [Crossref]
  8. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
    [Crossref]
  9. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
    [Crossref]
  10. S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).
  11. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  12. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  13. X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
    [Crossref]
  14. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
    [Crossref] [PubMed]
  15. E. Öğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
    [Crossref]
  16. J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
    [Crossref] [PubMed]
  17. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
    [Crossref] [PubMed]
  18. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  19. T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
    [Crossref]
  20. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [Crossref] [PubMed]
  21. M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
    [Crossref]
  22. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  25. H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
    [Crossref] [PubMed]
  26. D. M. Pozar, Microwave Engineering, 4th Ed (Wiley, 2011).

2014 (4)

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

2013 (2)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref] [PubMed]

2012 (4)

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

2010 (1)

E. Öğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

2009 (1)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

2008 (2)

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2004 (1)

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

An, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Bardou, N.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Beruete, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Bouchon, P.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Campillo, I.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, S.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Cheng, H.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dupuis, C.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gu, J.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Guo, C. C.

Haïdar, R.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Han, J.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Hao, J.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Hu, Y.-H.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Hu, Y.-S.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Huang, X.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Jaeck, J.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Jiang, S.-C.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kley, E.-B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Lévesque, Q.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Li, J.

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, T.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Li, Z.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Liang, D.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Liu, H.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Liu, K.

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Ma, G.-B.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Ma, T.

Makhsiyan, M.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Navarro-Cía, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ögüt, E.

E. Öğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pardo, F.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pelouard, J.-L.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peng, R.-W.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Qiu, M.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Ren, Q.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Sendur, K.

E. Öğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

Shi, H.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Sorolla, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tünnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, F.-M.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Wang, J.

Wang, M.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Wang, S.-M.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xiong, X.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Xu, Z.

Yang, B.

Yang, D.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, H.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, J.

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref] [PubMed]

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Yang, Y.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Ye, W. M.

Yin, X.-G.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, P.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yuan, X. D.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhang, A.

Zhang, J.

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref] [PubMed]

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Zhang, S.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Zhang, W.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Zhou, L.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, S.-N.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Zhu, Z. H.

Adv. Mater. (1)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

E. Öğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (2)

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Nano Lett. (2)

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Phys. Rev. Lett. (4)

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).

Plasmonics (1)

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (3)

D. M. Pozar, Microwave Engineering, 4th Ed (Wiley, 2011).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic model of the proposed CPC consisting of array of slotted L-shaped nanoantennas; (b) and (c) unit cells of the proposed designs with L-shaped and stepped L-shaped slots.
Fig. 2
Fig. 2 Reflection spectra for (a) L-shaped nanoantenna; (b) L-shaped nanoslot; and (c) slotted L-shaped nanoantenna (the z-components of H field (Hz) distributions at reflection dips for each structure are shown in the insets); (d) PCR and rotation azimuth angle φ for the slotted L-shaped nanoantenna structure. (p = 1500, tsub = 300, tAu = 50, L = 930, w = 460, L1 = 610, w1 = 25, unit: nm)
Fig. 3
Fig. 3 Simulated R y y and R x y with different (a) length of the solid L-shaped metallic antenna (L); (b) width of the solid L-shaped metallic antenna (w); (c) length of the L-shaped slot (L1); (d) width of the L-shaped slot (w1). (The other parameters are the same as the structure labeled in Figs. 2(c) and 2(d))
Fig. 4
Fig. 4 (a) Simulated Ryy and Rxy and (b) PCRs for the proposed slotted L-shaped CPC in Fig. 2(c) with different substrate thickness tsub; (c) Simulated Ryy and Rxy for the proposed CPC with stepped slots as shown in Fig. 1(c) (p = 1500, L = 930, w = 460, w1 = 120, L2 = 210, w2 = 40, unit: nm); (d) PCR and rotation azimuth angle φ for the proposed CPC with stepped L-shaped slots (L1 = 400 nm).
Fig. 5
Fig. 5 Reflectivity for (a) | R y y | 2 and (b) | R x y | 2 as a function of the incidence angle; (c) the PCR for different incidence angles; (d) the mean PCR in the frequency range [63.5, 93.2] THz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = ( R x x R x y R y x R y y )
φ = 1 2 tan 1 [ 2 R cos ( Δ φ ) 1 R 2 ]
PCR = | R x y | 2 / [ | R y y | 2 + | R x y | 2 ] .

Metrics