Abstract

Photovoltaic tweezers are a promising tool to place and move particles on the surface of a photovoltaic material in a controlled way. To exploit this new technique it is necessary to accurately know the electric field created by a specific illumination on the surface of the crystal and above it. This paper describes a numerical algorithm to obtain this electric field generated by several relevant light patterns, and uses them to calculate the dielectrophoretic potential acting over neutral, polarizable particles in the proximity of the crystal. The results are compared to experiments carried out in LiNbO3 with good overall agreement.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa
Opt. Express 27(2) 804-815 (2019)

Escape from an Optoelectronic Tweezer Trap: experimental results and simulations

Shuailong Zhang, Adele Nikitina, Yujie Chen, Yanfeng Zhang, Lin Liu, Andrew G. Flood, Joan Juvert, M. Dean Chamberlain, Nazir P. Kherani, Steven L. Neale, and Aaron R. Wheeler
Opt. Express 26(5) 5300-5309 (2018)

Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning

Juan F. Muñoz-Martínez, Iris Elvira, Mariano Jubera, Angel García-Cabañes, José Bruno Ramiro, Cándido Arregui, and Mercedes Carrascosa
Opt. Mater. Express 5(5) 1137-1146 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms and molecules,” IEEE J. Sel. Top. Quant. 6, 841–856 (2000).
    [Crossref]
  2. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  4. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
    [Crossref]
  5. M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/pdms-system,” Opt. Express 18, 17404–17411 (2010).
    [Crossref] [PubMed]
  6. S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
    [Crossref]
  7. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17, 9981–9988 (2009).
    [Crossref] [PubMed]
  8. F. Agulló-López, G. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in “Photorefractive Materials and Their Applications,”, vol. 113 of Springer Series in Optical Sciences P. Günter and J.-P. Huignard, eds. (SpringerNew York, 2006), pp. 43–82.
    [Crossref]
  9. M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
    [Crossref]
  10. M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
    [Crossref]
  11. S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37, 3744–3746 (2012).
    [Crossref] [PubMed]
  12. L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
    [Crossref] [PubMed]
  13. P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104 (2010).
    [Crossref]
  14. J. Villarroel, H. Burgos, Ángel García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011).
    [Crossref] [PubMed]
  15. H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
    [Crossref]
  16. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
    [Crossref]
  17. H. A. Pohl, Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields (Cambridge University Press, Cambridge; New York, 1978).
  18. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8, 425–454 (2006). PMID: .
    [Crossref] [PubMed]
  19. J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
    [Crossref]
  20. E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
    [Crossref]

2014 (1)

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

2013 (3)

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
[Crossref]

2012 (2)

S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37, 3744–3746 (2012).
[Crossref] [PubMed]

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/pdms-system,” Opt. Express 18, 17404–17411 (2010).
[Crossref] [PubMed]

P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104 (2010).
[Crossref]

2009 (1)

2007 (1)

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

2006 (1)

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8, 425–454 (2006). PMID: .
[Crossref] [PubMed]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

2000 (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms and molecules,” IEEE J. Sel. Top. Quant. 6, 841–856 (2000).
[Crossref]

1994 (1)

E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Adamovsky, G.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

Adleman, J. R.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

Agullo-Lopez, F.

E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
[Crossref]

Agulló-López, F.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Ángel García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011).
[Crossref] [PubMed]

F. Agulló-López, G. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in “Photorefractive Materials and Their Applications,”, vol. 113 of Springer Series in Optical Sciences P. Günter and J.-P. Huignard, eds. (SpringerNew York, 2006), pp. 43–82.
[Crossref]

Argiolas, N.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms and molecules,” IEEE J. Sel. Top. Quant. 6, 841–856 (2000).
[Crossref]

Blázquez-Castro, A.

Burgos, H.

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Ángel García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011).
[Crossref] [PubMed]

Buse, K.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

Calvo, G.

F. Agulló-López, G. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in “Photorefractive Materials and Their Applications,”, vol. 113 of Springer Series in Optical Sciences P. Günter and J.-P. Huignard, eds. (SpringerNew York, 2006), pp. 43–82.
[Crossref]

Carrascosa, M.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Ángel García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011).
[Crossref] [PubMed]

E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
[Crossref]

F. Agulló-López, G. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in “Photorefractive Materials and Their Applications,”, vol. 113 of Springer Series in Optical Sciences P. Günter and J.-P. Huignard, eds. (SpringerNew York, 2006), pp. 43–82.
[Crossref]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

Cristiani, I.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

Curley, M. J.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

Denz, C.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
[Crossref]

S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37, 3744–3746 (2012).
[Crossref] [PubMed]

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/pdms-system,” Opt. Express 18, 17404–17411 (2010).
[Crossref] [PubMed]

Eggert, H. A.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

Esseling, M.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37, 3744–3746 (2012).
[Crossref] [PubMed]

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/pdms-system,” Opt. Express 18, 17404–17411 (2010).
[Crossref] [PubMed]

Ferraro, P.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
[Crossref] [PubMed]

Fields, A.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

Fousek, J.

P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104 (2010).
[Crossref]

García-Cabañes, A.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

García-Cabañes, Ángel

Glaesener, S.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Grilli, S.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
[Crossref] [PubMed]

Holtmann, F.

Imbrock, J.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

Jubera, M.

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

Kong, Y.

Kuhnert, F. Y.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

Kukhtarev, N. V.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Lopez, V.

E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
[Crossref]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Marvan, M.

P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104 (2010).
[Crossref]

Matarrubia, J.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

Memmolo, P.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
[Crossref] [PubMed]

Miccio, L.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
[Crossref] [PubMed]

Mokrý, P.

P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104 (2010).
[Crossref]

Moore, L. E.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

Nava, G.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

Pan, L.

Plaza, J. L.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

Pohl, H. A.

H. A. Pohl, Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields (Cambridge University Press, Cambridge; New York, 1978).

Psaltis, D.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

Rupp, R. A.

Sada, C.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
[Crossref]

Sarkisov, S. S.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

Serrano, E.

E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
[Crossref]

Smith, C. C.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Sun, Q.

Tan, X.

Tang, B.

Villarroel, J.

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Ángel García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011).
[Crossref] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

Voldman, J.

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8, 425–454 (2006). PMID: .
[Crossref] [PubMed]

Wang, J.

Woerdemann, M.

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

Xu, J.

Zaltron, A.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

Zhang, X.

Annu. Rev. Biomed. Eng. (1)

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8, 425–454 (2006). PMID: .
[Crossref] [PubMed]

Appl. Phys. B-Lasers O. (1)

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B-Lasers O. 113, 1–7 (2013).
[Crossref]

Appl. Phys. Lett. (3)

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115 (2013).
[Crossref]

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 75, 901–903 (2001).
[Crossref]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909 (2007).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals - 2. beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979).
[Crossref]

IEEE J. Quantum Elect. (1)

E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO3 for strong light modulation depths,” IEEE J. Quantum Elect. 30, 875–880 (1994).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms and molecules,” IEEE J. Sel. Top. Quant. 6, 841–856 (2000).
[Crossref]

J. Appl. Phys. (1)

P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014).
[Crossref]

Lab Chip (1)

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12, 4449–4454 (2012).
[Crossref] [PubMed]

Nature (2)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013).
[Crossref]

Other (2)

H. A. Pohl, Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields (Cambridge University Press, Cambridge; New York, 1978).

F. Agulló-López, G. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in “Photorefractive Materials and Their Applications,”, vol. 113 of Springer Series in Optical Sciences P. Günter and J.-P. Huignard, eds. (SpringerNew York, 2006), pp. 43–82.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Two-dimensional representation of the crystal. Y-direction along C-axis. (b) Reference system and charge filaments for external field E i j P calculation.
Fig. 2
Fig. 2 Light intensity I with m = 0.1, internal charge ΔND and internal electric field EC.
Fig. 3
Fig. 3 (a) External electric field and (b) DEP potential in air, represented by equipotential lines. Sinusoidal illumination with m = 0.1
Fig. 4
Fig. 4 Sinusoidal illumination, modulation = 0.95: (a) Light intensity (I), bounded charge (ΔND), and internal electric field (EC). (b) Dielectrophoretic potential in air represented by equipotential lines.
Fig. 5
Fig. 5 (a) Beam intensity of a gaussian beam and (b) internal charge ΔND generated.
Fig. 6
Fig. 6 External electric field for a gaussian beam illumination. (a) Plane parallel to the crystal surface: E(gray), E(vectors). (b) Symmetry plane normal to the surface, containing the C-axis.
Fig. 7
Fig. 7 Dielectrophoretic potential generated by a gaussian beam at various distances over the surface.
Fig. 8
Fig. 8 Gaussian beam interference with grating period Λ and m = 0.7: (a) intensity (I) and ΔND; (b) dielectrophoretic potential in air at several distances from the crystal surface.
Fig. 9
Fig. 9 Experimental trapping for (a) gaussian single beam, (b) high modulated interference and (c) two gaussian beams interference.
Fig. 10
Fig. 10 Trapping of Fresnel-type pattern: (a) light intensity, (b) DEP potential over the surface of the crystal and (c) experimental trapping of CaCO3 particles..

Tables (1)

Tables Icon

Table 1 Photovoltaic parameters used in calculations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n t = s I N D γ n N A 1 q J
N D t = N A t = s I N D + γ n N A
J = q μ n E q D n + q s I N D L P V u P V
F = ( p E )
p = 2 π r 3 ε o ε M ( 0 ) ε P ( 0 ) ε M ( 0 ) ε P ( 0 ) + 2 ε M ( 0 ) E = ε 0 α E
V DEP = ε 0 α E 2
E i j P = q Δ N D i , j Δ x Δ y 4 π ε o ε r l z 0 p 2 cos ( θ ) i + p 2 sin ( θ ) j + ( z 2 r 1 ) k [ p 2 2 + ( z 2 r 1 ) 2 ] 3 / 2 d z 1 = = q Δ x Δ y Δ N D i , j cos ( θ ) 4 π ε o ε r p 2 { sin [ arctan ( z 2 p 2 ) ] sin [ arctan ( z 2 l z p 2 ) ] } j + q Δ x Δ y N D i , j sin ( θ ) 4 π ε o ε r p 2 { sin [ arctan ( z 2 p 2 ) ] sin [ arctan ( z 2 l z p 2 ) ] } j + q Δ x Δ y N D i , j 4 π ε o ε r [ 1 p 2 2 + ( z 2 l z ) 2 1 p 2 2 + ( z 2 ) 2 ] k
E P = i = 1 N I j = 1 N J E i , j P
I = I 0 ( 1 + m cos ( K x ) )

Metrics