Abstract

We report a practical 12.5-Gb/s, 12.5-GHz-spaced ultra-dense wavelength-division-multiplexed passive optical network (UD-WDM PON). For the cost-effectiveness, we implement the downstream links by using electro-absorption modulated lasers (EMLs) in the 4-level pulse amplitude modulation (4PAM) format and PIN receivers, and the upstream links by using reflective semiconductor optical amplifiers (RSOAs) modulated in the quadrature phase-shift-keying (QPSK) format and low-cost self-homodyne receivers. To further enhance its cost-effectiveness, we also utilize an optical frequency comb generator, instead of a large number of wavelength-selected lasers, to provide the seed light for these colorless RSOAs. We optimize the operating conditions of the EMLs and RSOAs to maximize the power margins in the presence of the crosstalk arising from closely spaced neighboring channels and the inter-symbol interference (ISI) caused by the narrow passband of the cascaded arrayed-waveguide gratings (AWGs) as well as the limited modulation bandwidths of RSOAs. The experimental results show that we can secure the power margins of >2.5 dB for both upstream and downstream links of the proposed UD-WDM PON.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 40-Gb/s QPSK upstream signal in RSOA-based coherent WDM PON using offset PDM technique

H. K. Shim, K. Y. Cho, U. H. Hong, and Y. C. Chung
Opt. Express 21(3) 3721-3725 (2013)

Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung
Opt. Express 20(14) 15353-15358 (2012)

A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver

Domaniç Lavery, Maria Ionescu, Sergejs Makovejs, Enrico Torrengo, and Seb J. Savory
Opt. Express 18(25) 25855-25860 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proc. of European Conference on Optical Communication2009, paper 10.5.5.
  2. S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of Optical Fiber Communication 2011, paper PDPD4.
  3. D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express 18(25), 25855–25860 (2010).
    [Crossref] [PubMed]
  4. Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
    [Crossref]
  5. J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
    [Crossref]
  6. Z. Dong, J. Yu, H. C. Chien, N. Chi, L. Chen, and G. K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express 19(12), 11100–11105 (2011).
    [Crossref] [PubMed]
  7. R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
    [Crossref]
  8. Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. of European Conference on Optical Communication2011, paper Th.11.C.4.
    [Crossref]
  9. S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON,” in Proc. of Optical Fiber Communication 2011, paper OTuB3.
  10. M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
    [Crossref]
  11. S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
    [Crossref]
  12. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
    [Crossref]
  13. J. Zhou, C. Yu, and H. Kim, “1.5-μm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.
  14. M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
    [Crossref]
  15. D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
    [Crossref]
  16. G. Agrawal, Fiber-optic communication systems, 3rd Ed., (Wiley, 2002).
  17. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
    [Crossref]
  18. I. Kaminow and T. Koch, Optical fiber telecommunications IIIA, (Academic, 1997).
  19. M. Eiselt, “Limits on WDM systems due to four-wave mixing: a statistical approach,” J. Lightwave Technol. 17(11), 2261–2267 (1999).
    [Crossref]
  20. H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
    [Crossref]
  21. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref] [PubMed]
  22. K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express 20(14), 15353–15358 (2012).
    [Crossref] [PubMed]
  23. K. H. Lee, K.-H. Park, and W. Y. Choi, “Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses,” Opt. Eng. 43(11), 2715–2718 (2004).
    [Crossref]
  24. K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced operating range of WDM PON implemented by using uncooled RSOAs,” IEEE Photon. Technol. Lett. 20(18), 1536–1538 (2008).
    [Crossref]
  25. M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol. 24(2), 740–746 (2006).
    [Crossref]

2014 (2)

J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
[Crossref]

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

2013 (1)

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (2)

2009 (1)

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

2008 (1)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced operating range of WDM PON implemented by using uncooled RSOAs,” IEEE Photon. Technol. Lett. 20(18), 1536–1538 (2008).
[Crossref]

2006 (1)

2004 (2)

K. H. Lee, K.-H. Park, and W. Y. Choi, “Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses,” Opt. Eng. 43(11), 2715–2718 (2004).
[Crossref]

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

2001 (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

2000 (1)

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

1999 (1)

1996 (1)

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[Crossref]

1992 (1)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Agata, A.

Araya, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

Cao, Z.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Chang, G. K.

Chang, J. H.

Chen, L.

Chi, N.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Z. Dong, J. Yu, H. C. Chien, N. Chi, L. Chen, and G. K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express 19(12), 11100–11105 (2011).
[Crossref] [PubMed]

Chien, H. C.

Cho, K. Y.

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express 20(14), 15353–15358 (2012).
[Crossref] [PubMed]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
[Crossref]

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced operating range of WDM PON implemented by using uncooled RSOAs,” IEEE Photon. Technol. Lett. 20(18), 1536–1538 (2008).
[Crossref]

Choi, W. Y.

K. H. Lee, K.-H. Park, and W. Y. Choi, “Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses,” Opt. Eng. 43(11), 2715–2718 (2004).
[Crossref]

Choi, Y. B.

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

Chung, Y. C.

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express 20(14), 15353–15358 (2012).
[Crossref] [PubMed]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
[Crossref]

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced operating range of WDM PON implemented by using uncooled RSOAs,” IEEE Photon. Technol. Lett. 20(18), 1536–1538 (2008).
[Crossref]

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Dong, Z.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Z. Dong, J. Yu, H. C. Chien, N. Chi, L. Chen, and G. K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express 19(12), 11100–11105 (2011).
[Crossref] [PubMed]

Eiselt, M.

Ferreira, R.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
[Crossref]

Fujiwara, M.

M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol. 24(2), 740–746 (2006).
[Crossref]

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

Funabashi, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

Hong, U. H.

Horiuchi, Y.

Inoue, K.

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Ionescu, M.

Iwatsuki, K.

Jung, D. K.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Jung, S. P.

Kamio, Y.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Kani, J.

M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol. 24(2), 740–746 (2006).
[Crossref]

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

Kasukawa, A.

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

Kim, H.

J. Zhou, C. Yu, and H. Kim, “1.5-μm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Lavery, D.

Leaird, D. E.

Lee, K. H.

K. H. Lee, K.-H. Park, and W. Y. Choi, “Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses,” Opt. Eng. 43(11), 2715–2718 (2004).
[Crossref]

Li, X.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Lima, M.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
[Crossref]

Long, C. M.

Luis, R. S.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Makovejs, S.

Mendinueta, J. M. D.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Mukaihara, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

Nakamura, M.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Nasu, H.

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

Neves, D. M.

Nomura, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

Oda, K.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[Crossref]

Park, K.-H.

K. H. Lee, K.-H. Park, and W. Y. Choi, “Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses,” Opt. Eng. 43(11), 2715–2718 (2004).
[Crossref]

Park, S. J.

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

Puttnam, B. J.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Reis, J. D.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
[Crossref]

Sano, T.

Savory, S. J.

Shahpari, A.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
[Crossref]

Shin, S. K.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Supradeepa, V. R.

Suzuki, H.

M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol. 24(2), 740–746 (2006).
[Crossref]

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

Suzuki, M.

Takahashi, H.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[Crossref]

Takushima, Y.

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express 20(14), 15353–15358 (2012).
[Crossref] [PubMed]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
[Crossref]

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced operating range of WDM PON implemented by using uncooled RSOAs,” IEEE Photon. Technol. Lett. 20(18), 1536–1538 (2008).
[Crossref]

Tanaka, K.

Teixeira, A.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

J. D. Reis, A. Shahpari, R. Ferreira, S. Ziaie, D. M. Neves, M. Lima, and A. Teixeira, “Terabit+ (192×10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” J. Lightwave Technol. 32(4), 729–735 (2014).
[Crossref]

Teshima, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

Toba, H.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996).
[Crossref]

Torrengo, E.

Vujicic, Z.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Wada, N.

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

Weiner, A. M.

Woo, H. G.

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

Wu, R.

Yu, C.

J. Zhou, C. Yu, and H. Kim, “1.5-μm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Yu, J.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

Z. Dong, J. Yu, H. C. Chien, N. Chi, L. Chen, and G. K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express 19(12), 11100–11105 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, C. Yu, and H. Kim, “1.5-μm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Ziaie, S.

Electron. Lett. (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37(15), 967–968 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Funabashi, H. Nasu, T. Mukaihara, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–318 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (5)

D. K. Jung, S. K. Shin, H. G. Woo, and Y. C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE Photon. Technol. Lett. 12(3), 338–340 (2000).
[Crossref]

R. S. Luis, A. Shahpari, J. D. Reis, R. Ferreira, Z. Vujicic, B. J. Puttnam, J. M. D. Mendinueta, M. Lima, M. Nakamura, Y. Kamio, N. Wada, and A. Teixeira, “Ultra high capacity self-homodyne PON with simplified ONU and burst-mode upstream,” IEEE Photon. Technol. Lett. 26(7), 686–689 (2014).
[Crossref]

S. J. Park, Y. B. Choi, S. P. Jung, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Hybrid WDM/TDMA-PON using self-homodyne and differential coding,” IEEE Photon. Technol. Lett. 21(7), 465–467 (2009).
[Crossref]

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8 × 9.95-Gb/s ultra-dense WDM-PON on a 12.5-GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett. 25(2), 194–197 (2013).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced operating range of WDM PON implemented by using uncooled RSOAs,” IEEE Photon. Technol. Lett. 20(18), 1536–1538 (2008).
[Crossref]

J. Lightwave Technol. (6)

Opt. Eng. (1)

K. H. Lee, K.-H. Park, and W. Y. Choi, “Measurement of the carrier lifetime and linewidth enhancement factor of semiconductor optical amplifiers using their optical modulation responses,” Opt. Eng. 43(11), 2715–2718 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (7)

I. Kaminow and T. Koch, Optical fiber telecommunications IIIA, (Academic, 1997).

Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. of European Conference on Optical Communication2011, paper Th.11.C.4.
[Crossref]

S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON,” in Proc. of Optical Fiber Communication 2011, paper OTuB3.

G. Agrawal, Fiber-optic communication systems, 3rd Ed., (Wiley, 2002).

H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proc. of European Conference on Optical Communication2009, paper 10.5.5.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of Optical Fiber Communication 2011, paper PDPD4.

J. Zhou, C. Yu, and H. Kim, “1.5-μm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Configuration of the proposed 12.5-Gb/s, 12.5-GHz spaced UD-WDM PON (Tx: transmitter; Rx: receiver; ECL: external-cavity laser; IM: intensity modulator; PM: phase modulator; PS: phase shifter; PBS: polarization-beam splitter; AWG: arrayed-waveguide grating; PD: photo-detector; EML: electro-absorption modulated laser; WDM: wavelength-division multiplexer; FR: Faraday rotator; RSOA: reflective semiconductor optical amplifier).
Fig. 2
Fig. 2 (a) Measured transfer curve of the EML and (b) transmittance of the AWGs used in this experiment.
Fig. 3
Fig. 3 BER curves of the 12.5-Gb/s downstream signal in the 4PAM format measured with and without the two AWGs on the link.
Fig. 4
Fig. 4 Measured power penalties of the 12.5-Gb/s downstream 4PAM signals as a function of the frequency offset between the operating wavelength of EML and the center wavelength of the cascaded AWGs’ passband.
Fig. 5
Fig. 5 Optical spectra of the downstream EML signals measured at (a) point A, (b) point B, and (c) point C in Fig. 1.
Fig. 6
Fig. 6 BER curves of the 12.5-Gb/s downstream signals generated by using EMLs.
Fig. 7
Fig. 7 Measured BER curves of the 12.5-Gb/s QPSK upstream signals in the back-to-back condition.
Fig. 8
Fig. 8 Optical spectra of the (a) the generated optical frequency comb measured at point D, (b) one of the demultiplexed comb lines (used as the seed light) measured at point E, (c) one of the demultiplexed comb lines (used as an LO) measured at point F, (d) two upstream signals in the QPSK format measured at point G, and (e) the demultiplexed upstream signal measured at point H in Fig. 1.
Fig. 9
Fig. 9 BER curves of the 12.5-Gb/s upstream QPSK signals measured by using either tunable lasers or a comb generator for the seed light. The inset shows the constellation of the upstream signal after 20-km transmission (@ received power = −30 dBm). TLD: tunable laser diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P e n a l t y = 10 log 10 [ ( E R + 1 ) / ( E R 1 ) ] (dB)
Δ ν = 1 2 π Δ ϕ Δ t 1 2 π 3 π / 2 1 / 6.25 GHz = 4.7 GHz

Metrics