Abstract

Hydrogenated amorphous silicon (a:Si-H) has recently been recognized as a highly nonlinear CMOS compatible photonic platform. We experimentally demonstrate the generation of a supercontinuum (SC) spanning over 500 nm in a-Si:H photonic wire waveguide at telecommunication wavelengths using femtosecond input pulse with energy lower than 5 pJ. Numerical modeling of pulse propagation in the waveguide, based on the experimentally characterized dispersion profile, shows that the supercontinuum is the result of soliton fission and dispersive wave generation. It is demonstrated that the SC is highly coherent and that the waveguides do not suffer from material degradation under femtosecond pulse illumination. Finally, a direct comparison of SC generation in c-Si and a-Si:H waveguides confirms the higher performances of a-Si:H over c-Si for broadband low power SC generation at telecommunication wavelengths.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range

François Leo, Simon-Pierre Gorza, Stéphane Coen, Bart Kuyken, and Gunther Roelkens
Opt. Lett. 40(1) 123-126 (2015)

Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths

Jassem Safioui, François Leo, Bart Kuyken, Simon-Pierre Gorza, Shankar Kumar Selvaraja, Roel Baets, Philippe Emplit, Gunther Roelkens, and Serge Massar
Opt. Express 22(3) 3089-3097 (2014)

Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides

Charles Ciret and Simon-Pierre Gorza
J. Opt. Soc. Am. B 34(6) 1156-1162 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [Crossref]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 36, 1135–1184 (2006).
    [Crossref]
  3. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [Crossref] [PubMed]
  4. R. Halir, Y. Okawachi, J.S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
    [Crossref] [PubMed]
  5. J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
    [Crossref] [PubMed]
  6. I. Hsieh, X. Chen, X. Liu, J. Dadap, N. Panoiu, C. Chou, F. Xia, W. Green, Y. Vlasov, and R. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
    [Crossref] [PubMed]
  7. W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
    [Crossref]
  8. F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
    [Crossref] [PubMed]
  9. A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.
  10. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
    [Crossref]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
    [Crossref] [PubMed]
  12. L. Shen, N. Healy, L. Xu, H. Y. Cheng, T. D. Day, J. H. V. Price, J. V. Badding, and A. C. Peacock, “Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared,” Opt. Lett.,  39, 5721–5724 (2014).
    [Crossref] [PubMed]
  13. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15, 17761–17771 (2007).
    [Crossref] [PubMed]
  14. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
    [Crossref] [PubMed]
  15. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
    [Crossref] [PubMed]
  16. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
    [Crossref] [PubMed]
  17. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
    [Crossref] [PubMed]
  18. P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express 20, 26110–26116 (2012).
    [Crossref] [PubMed]
  19. S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.
  20. P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
    [Crossref]
  21. F. Leo, U. Dave, S. Keyvaninia, B. Kuyken, and G. Roelkens, ”Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region,” Opt. Lett. 39, 711–714 (2014).
    [Crossref] [PubMed]
  22. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulse,” IEEE J. Quantum Electron. 35, 501–509 (1999).
    [Crossref]
  23. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  24. N. Maley, D. Beerman, and J.S. Lannin, “Dynamics of tetrahedral networks: Amorphous Si and Ge,” Phys. Rev. B 38, 10611–10622 (1988).
    [Crossref]
  25. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18, 16826–16831 (2010).
    [Crossref] [PubMed]
  26. J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
    [Crossref] [PubMed]
  27. Y. Silberberg, “Solitons and two-photon absorption,” Opt. Lett. 15, 1005–1007 (1990).
    [Crossref] [PubMed]
  28. F. Leo, S.-P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” arXiv:1410.4390.
  29. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [Crossref]
  30. F. Lu and W. H. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12, 347–353 (2004).
    [Crossref] [PubMed]
  31. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
    [Crossref]
  32. M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
    [Crossref]
  33. H. Fritzsche, “Development in understanding and controlling the Staebler-Wronski effect in a-Si:H,” Annu. Rev. Mater. Res. 31, 47–79 (2001).
    [Crossref]
  34. K. Morigaki and H. Hikita, “Modeling of light-induced defect creation in hydrogenated amorphous silicon,” Phys. Rev. B 76, 085201 (2007).
    [Crossref]
  35. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [Crossref] [PubMed]
  36. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007 (2008).
    [Crossref]
  37. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated amorphous silicon waveguides,” Opt. Express 18, 8998–9005 (2010).
    [Crossref] [PubMed]
  38. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern- effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
    [Crossref] [PubMed]
  39. N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Report 3, 02885 (2013).
    [Crossref]
  40. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
    [Crossref]
  41. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
    [Crossref] [PubMed]
  42. A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20, 5538–5546 (2012).
    [Crossref] [PubMed]

2014 (5)

2013 (1)

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Report 3, 02885 (2013).
[Crossref]

2012 (7)

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern- effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref] [PubMed]

A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20, 5538–5546 (2012).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express 20, 26110–26116 (2012).
[Crossref] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

R. Halir, Y. Okawachi, J.S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref] [PubMed]

2011 (4)

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

2010 (5)

2008 (2)

2007 (3)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 36, 1135–1184 (2006).
[Crossref]

2004 (1)

2001 (1)

H. Fritzsche, “Development in understanding and controlling the Staebler-Wronski effect in a-Si:H,” Annu. Rev. Mater. Res. 31, 47–79 (2001).
[Crossref]

2000 (1)

1999 (1)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulse,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[Crossref]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1990 (1)

1989 (1)

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

1988 (1)

N. Maley, D. Beerman, and J.S. Lannin, “Dynamics of tetrahedral networks: Amorphous Si and Ge,” Phys. Rev. B 38, 10611–10622 (1988).
[Crossref]

1985 (1)

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[Crossref]

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

Agarwal, A.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

Amiranashvili, Sh.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

Badding, J. V.

Baets, R.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

Baril, N. F.

Beausoleil, R. G.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Beerman, D.

N. Maley, D. Beerman, and J.S. Lannin, “Dynamics of tetrahedral networks: Amorphous Si and Ge,” Phys. Rev. B 38, 10611–10622 (1988).
[Crossref]

Bellini, M.

Ben Bakir, B.

Bogaerts, W.

Carletti, L.

Chen, X.

Cheng, H. Y.

Choi, D.-Y.

Chou, C.

Choudhary, A.

Clemmen, S.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Coen, S.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 36, 1135–1184 (2006).
[Crossref]

F. Leo, S.-P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” arXiv:1410.4390.

Dadap, J.

Dave, U.

Day, T. D.

De La Rue, R. M.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Demircan, A.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

Ding, W.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 36, 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

Elshaari, A. W.

Emplit, Ph.

Fainman, Y.

Fedeli, J. M.

Foster, A. C.

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

Foster, M. A.

Fritzsche, H.

H. Fritzsche, “Development in understanding and controlling the Staebler-Wronski effect in a-Si:H,” Annu. Rev. Mater. Res. 31, 47–79 (2001).
[Crossref]

Gaeta, A. L.

Galili, M.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 36, 1135–1184 (2006).
[Crossref]

Gorbach, A. V.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Gorza, S.-P.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

F. Leo, S.-P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” arXiv:1410.4390.

Goto, T.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Gotoh, H.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Green, W.

Green, W. M. J.

Grillet, C.

Grosse, P.

Halir, R.

Hänsch, T. W.

Hasama, T.

Healy, N.

Hikita, H.

K. Morigaki and H. Hikita, “Modeling of light-induced defect creation in hydrogenated amorphous silicon,” Phys. Rev. B 76, 085201 (2007).
[Crossref]

Hitachi, K.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Hsieh, I.

Hu, H.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulse,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[Crossref]

Ikeda, K.

Ishikawa, H.

Ishizawa, A.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Itoga, E.

Jackson, D. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Jackson, W. B.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[Crossref]

Jeppesen, P.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Ji, H.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Kamei, T.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Kawashima, H.

Keyvaninia, S.

Kimerling, L. C.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Kintaka, K.

Knight, J. C.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Knox, W. H.

Kockaert, P.

König, F.

Kou, R.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Kuyken, B.

F. Leo, U. Dave, S. Keyvaninia, B. Kuyken, and G. Roelkens, ”Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region,” Opt. Lett. 39, 711–714 (2014).
[Crossref] [PubMed]

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

F. Leo, S.-P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” arXiv:1410.4390.

Lamont, M. R.

Lannin, J.S.

N. Maley, D. Beerman, and J.S. Lannin, “Dynamics of tetrahedral networks: Amorphous Si and Ge,” Phys. Rev. B 38, 10611–10622 (1988).
[Crossref]

Leo, F.

Levy, J.S.

Lin, Q.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Lipson, M.

Liu, X.

Liu, Y.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007 (2008).
[Crossref]

Lu, F.

Luther-Davies, B.

Madden, S.

Maley, N.

N. Maley, D. Beerman, and J.S. Lannin, “Dynamics of tetrahedral networks: Amorphous Si and Ge,” Phys. Rev. B 38, 10611–10622 (1988).
[Crossref]

Massar, S.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

Matsuda, N.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Mehta, P.

Menezo, S.

Merritt, P. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Michel, J.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Monat, C.

Mori, M.

Morigaki, K.

K. Morigaki and H. Hikita, “Modeling of light-induced defect creation in hydrogenated amorphous silicon,” Phys. Rev. B 76, 085201 (2007).
[Crossref]

Morthier, G.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Moss, D. J.

Murphy, T. E.

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

Nakanishi, K.

Namiki, S.

Narayanan, K.

Nishi, H.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Nishikawa, T.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Ogasawara, T.

Okano, M.

Okawachi, Y.

Osgood, R.

Osgood, R. M.

Oxenløwe, L. K.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Pagán, V. R.

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

Panoiu, N.

Peacock, A. C.

Preble, S. F.

Price, J. H. V.

Pu, M.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

Roelkens, G.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

F. Leo, U. Dave, S. Keyvaninia, B. Kuyken, and G. Roelkens, ”Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region,” Opt. Lett. 39, 711–714 (2014).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

F. Leo, S.-P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” arXiv:1410.4390.

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

Safioui, J.

Sakakibara, Y.

Sazio, P. J. A.

Selvaraja, S. K.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

Shen, L.

Shen, Y.

Shoji, Y.

Silberberg, Y.

Skryabin, D. V.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Sogawa, T.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Sorel, M.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

Steinmeyer, G.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

Strain, M. J.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Stutzmann, M.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[Crossref]

Suda, S.

Suess, R. J.

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

Suhailin, F. H.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Report 3, 02885 (2013).
[Crossref]

Takei, R.

Tanizawa, K.

Tatam, R. P.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Tsai, C. C.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[Crossref]

Tsang, H. K.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007 (2008).
[Crossref]

Van Thourhout, D.

Vlasov, Y.

Vukovic, N.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Report 3, 02885 (2013).
[Crossref]

Wadswarth, W. J.

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulse,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[Crossref]

Wang, K.Y.

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

Wang, K.-Y.

Wathen, J. J.

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

Willner, A. E.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

Xia, F.

Xu, L.

Yamada, K.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

Yan, Y.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Yue, Y.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Zhang, L.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

Annu. Rev. Mater. Res. (1)

H. Fritzsche, “Development in understanding and controlling the Staebler-Wronski effect in a-Si:H,” Annu. Rev. Mater. Res. 31, 47–79 (2001).
[Crossref]

Appl. Phys. Lett. (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulse,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[Crossref]

IEEE J. Selected Topics Quantum Electron. (1)

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Selected Topics Quantum Electron. 18, 1799–1805 (2012).
[Crossref]

J. Lightwave Technol. (1)

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Opt. Express (15)

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18, 16826–16831 (2010).
[Crossref] [PubMed]

F. Lu and W. H. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12, 347–353 (2004).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express 20, 26110–26116 (2012).
[Crossref] [PubMed]

K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15, 17761–17771 (2007).
[Crossref] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
[Crossref] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
[Crossref] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[Crossref] [PubMed]

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
[Crossref] [PubMed]

I. Hsieh, X. Chen, X. Liu, J. Dadap, N. Panoiu, C. Chou, F. Xia, W. Green, Y. Vlasov, and R. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[Crossref] [PubMed]

W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 39, 26625–26630 (2010).
[Crossref]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated amorphous silicon waveguides,” Opt. Express 18, 8998–9005 (2010).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 20, B146–B153 (2011).
[Crossref]

A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20, 5538–5546 (2012).
[Crossref] [PubMed]

Opt. Lett. (9)

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern- effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

R. Halir, Y. Okawachi, J.S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

L. Shen, N. Healy, L. Xu, H. Y. Cheng, T. D. Day, J. H. V. Price, J. V. Badding, and A. C. Peacock, “Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared,” Opt. Lett.,  39, 5721–5724 (2014).
[Crossref] [PubMed]

M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
[Crossref]

Y. Silberberg, “Solitons and two-photon absorption,” Opt. Lett. 15, 1005–1007 (1990).
[Crossref] [PubMed]

F. Leo, U. Dave, S. Keyvaninia, B. Kuyken, and G. Roelkens, ”Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region,” Opt. Lett. 39, 711–714 (2014).
[Crossref] [PubMed]

Optics Express (1)

J. J. Wathen, V. R. Pagán, R. J. Suess, K.Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Optics Express 22, 22730–22742 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Phys. Rev. B (3)

N. Maley, D. Beerman, and J.S. Lannin, “Dynamics of tetrahedral networks: Amorphous Si and Ge,” Phys. Rev. B 38, 10611–10622 (1988).
[Crossref]

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[Crossref]

K. Morigaki and H. Hikita, “Modeling of light-induced defect creation in hydrogenated amorphous silicon,” Phys. Rev. B 76, 085201 (2007).
[Crossref]

Phys. Rev. Lett. (2)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 36, 1135–1184 (2006).
[Crossref]

Sci. Report (1)

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Report 3, 02885 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007 (2008).
[Crossref]

Other (3)

F. Leo, S.-P. Gorza, S. Coen, B. Kuyken, and G. Roelkens, “Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range,” arXiv:1410.4390.

A. Ishizawa, T. Goto, H. Nishi, N. Matsuda, R. Kou, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “On-chip supercontinuum generation in a dispersion-controlled silicon-wire waveguide,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper ATu3P.3.

S.-P. Gorza, F. Leo, B. Kuyken, S. K. Selvaraja, G. Roelkens, R. Baets, Ph. Emplit, S. Massar, and J. Safioui, “Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime,” in Conference on Laser and Electro-Optics, San Jose, California United States, 8–13 June 2014, paper FW1D.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Spectra recorded at the output of a 1-cm-long a:Si-H waveguide for increasing input peak power. The curves are shifted by 20 dB for clarity and are labeled according to the input on-chip peak power.
Fig. 2
Fig. 2 Left: Experimental setup used to measure the GVD of our nanowires. Right: Measured GVD. The solid red curve shows the fourth-order polynomial fit of β2(ω) plotted as a function of the wavelength, for our a:Si-H waveguides. The curvature of the phase difference between the reference and the waveguide arms (d2Δϕ/dω2) for the 1-cm-long photonic wire is shown in the inset (cross) along with the 4th order polynomial fit of the data (solid line). The green dashed line shows the measured GVD of similar crystalline silicon waveguides (same mask).
Fig. 3
Fig. 3 Pseudocolor plots of the simulated spectral and temporal evolution along the propagation for a 2.3 W (left) and 13 W (right) 188 fs Gaussian input pulse (FWHM). Top plots (blue) highlight the waveguide output at z = 10 mm. The red filled curve is the measured output spectrum for comparison (see also in Fig. 1).
Fig. 4
Fig. 4 Experimental results: (a) Normalized spectrum at the output of the waveguide. (b) Spectrum at the output of the interferometer when aligned to maximize the transmission in the 1450–1750 nm spectral region. (c) Same as (b) but for the 1650–1950 nm spectral region. The measured deep fringes indicate strong phase locking accross the supercontinuum. Note that due to experimental constraints, the amplitudes in the two arms are not equal on the whole spectral windows. The fringe visibility thus gives the minimum value of the first-order coherence.
Fig. 5
Fig. 5 Transmission, normalized to its maximum value, for 188 fs and 1.5 ps input pulse and similar peak power of about 12 W. The two measurements where taken with the same post-annealed waveguide.
Fig. 6
Fig. 6 Supercontinuum generation in similar waveguides made up of a-Si:H or c-Si. The dispersion curve of these waveguides are displayed in Fig. 1. The pump wavelength is λs = 1575 nm (a) and λs = 1650 nm (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z = i k = 2 6 i k k ! β k k A ( z , t ) t k α 0 2 A ( z , t ) + i ( 1 + i ω 0 t ) A ( z , t ) R ( t ) | A ( z , t t ) | 2 d t .

Metrics