Abstract

We report that the Fano resonance of self-collimated beams can be achieved in a two-dimensional photonic crystal by introducing a Fano resonator that is composed of zigzag line defects. An asymmetric Fano line shape in a transmission spectrum is generated by the interference between radiated light beams from the resonator and self-collimated beams that directly pass through the resonator without resonance. It is shown that the Fano profile increases in sharpness as the number of zigzag line defects increases because the phase values of the radiated light beams change more rapidly when the number of defects increases. The Fano resonance of self-collimated beams could provide an efficient approach to manipulate light propagation and increase the possibility of application of self-collimated beams.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal

Sun-Goo Lee, Seong-Han Kim, Teun-Teun Kim, Jae-Eun Kim, Hae Yong Park, and Chul-Sik Kee
J. Opt. Soc. Am. B 30(6) 1743-1746 (2013)

Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal

Sun-Goo Lee, Seong-Han Kim, Teun-Teun Kim, Jae-Eun Kim, Hae Yong Park, and Chul-Sik Kee
Opt. Express 20(8) 8309-8316 (2012)

Ring-type Fabry-Pérot filter based on the self-collimation effect in a 2D photonic crystal

Teun-Teun Kim, Sun-Goo Lee, Seong-Han Kim, Jae-Eun Kim, Hae Yong Park, and Chul-Sik Kee
Opt. Express 18(16) 17106-17113 (2010)

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
    [Crossref]
  2. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
    [Crossref] [PubMed]
  3. M. Heuck, P. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38, 2466–2468 (2013).
    [Crossref] [PubMed]
  4. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [Crossref]
  5. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
    [Crossref] [PubMed]
  6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref] [PubMed]
  7. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
    [Crossref] [PubMed]
  8. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [Crossref]
  9. P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
    [Crossref]
  10. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [Crossref] [PubMed]
  11. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
    [Crossref] [PubMed]
  12. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
    [Crossref] [PubMed]
  13. B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  14. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
    [Crossref] [PubMed]
  15. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
    [Crossref] [PubMed]
  16. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
    [Crossref]
  17. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. Jen, and R. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20) 3774–3784 (2014).
    [Crossref]
  18. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [Crossref]
  19. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
    [Crossref] [PubMed]
  20. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
    [Crossref] [PubMed]
  21. S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007).
    [Crossref] [PubMed]
  22. S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
    [Crossref]
  23. Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
    [Crossref]
  24. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
    [Crossref]
  25. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
    [Crossref] [PubMed]
  26. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
    [Crossref]
  27. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
    [Crossref]
  28. H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal,” Opt. Express 18, 6437–6446 (2010).
    [Crossref] [PubMed]
  29. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
    [Crossref] [PubMed]
  30. X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17, 19808–19813 (2009).
    [Crossref] [PubMed]
  31. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
    [Crossref] [PubMed]
  32. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
    [Crossref] [PubMed]
  33. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “High-efficiency polarization beam splitter based on a self-collimating photonic crystal,” J. Opt. Soc. Am. B 27, 2247–2254 (2010).
    [Crossref]
  34. D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
    [Crossref]
  35. J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
    [Crossref] [PubMed]
  36. S.-G. Lee and C.-S. Kee, “Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface,” Appl. Opt. 52, 3229–3233 (2013).
    [Crossref] [PubMed]
  37. S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
    [Crossref] [PubMed]
  38. S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal,” J. Opt. Soc. Am. B 30, 1743–1746 (2013).
    [Crossref]
  39. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
    [Crossref]
  40. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 181, 173–190 (2001).
    [Crossref]
  41. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
    [Crossref]
  42. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
    [Crossref] [PubMed]
  43. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
    [Crossref]
  44. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  45. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
    [Crossref]
  46. J. Lee, D. Kim, G. Kim, O. Kwon, K. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652 (2008).
    [Crossref] [PubMed]
  47. K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
    [Crossref] [PubMed]
  48. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based Hybrid Integrated Photonic Devices for Silicon On-chip Modulation and Board-level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
    [Crossref]
  49. X. Zhang, H. Subbaraman, A. Hosseini, and R. Chen, “Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide,” Opt. Express 22, 20678–20690 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (9)

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based Hybrid Integrated Photonic Devices for Silicon On-chip Modulation and Board-level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal,” J. Opt. Soc. Am. B 30, 1743–1746 (2013).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[Crossref] [PubMed]

M. Heuck, P. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38, 2466–2468 (2013).
[Crossref] [PubMed]

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

S.-G. Lee and C.-S. Kee, “Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface,” Appl. Opt. 52, 3229–3233 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref] [PubMed]

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[Crossref]

2010 (7)

J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “High-efficiency polarization beam splitter based on a self-collimating photonic crystal,” J. Opt. Soc. Am. B 27, 2247–2254 (2010).
[Crossref]

H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal,” Opt. Express 18, 6437–6446 (2010).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[Crossref] [PubMed]

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

2009 (4)

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17, 19808–19813 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (4)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
[Crossref] [PubMed]

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007).
[Crossref] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

2006 (3)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[Crossref]

2005 (1)

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[Crossref]

2004 (2)

S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[Crossref] [PubMed]

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

2003 (2)

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

2001 (1)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 181, 173–190 (2001).
[Crossref]

2000 (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
[Crossref]

Al-Naib, I. A. I.

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Caro, J.

Chakravarty, S.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Chen, C.

Chen, H.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

Chen, L.

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[Crossref]

Chen, R.

Chen, R. T.

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based Hybrid Integrated Photonic Devices for Silicon On-chip Modulation and Board-level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

Chen, X.

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17, 19808–19813 (2009).
[Crossref] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

Choi, J.-S.

Chong, C. T.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Dahlem, M. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Ding, W.

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[Crossref]

Dunbar, L. A.

Dundar, M. A.

Elesin, Y.

Fan, S.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Feng, S.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

Fink, M.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Ge, F.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Guo, L. J.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Halas, N. J.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Heuck, M.

Hosseini, A.

Houdre, R.

Hu, T.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Inoue, M.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Ippen, E. P.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Jen, A.

Jen, A. K.

Jiang, X.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 181, 173–190 (2001).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 181, 173–190 (2001).
[Crossref]

Kaina, N.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kee, C.-S

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[Crossref]

Kee, C.-S.

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal,” J. Opt. Soc. Am. B 30, 1743–1746 (2013).
[Crossref]

S.-G. Lee and C.-S. Kee, “Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface,” Appl. Opt. 52, 3229–3233 (2013).
[Crossref] [PubMed]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[Crossref] [PubMed]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[Crossref] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Kim, D.

Kim, G.

Kim, J.-E

Kim, J.-E.

Kim, K.

Kim, S.-H.

Kim, T.-T.

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Koch, M.

Kolodziejski, L. A.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kotlyar, M. V.

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
[Crossref] [PubMed]

Kristensen, P.

Kuramochi, E.

Kwon, O.

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Le Thomas, N.

Lee, J.

Lee, M. H.

Lee, S. G.

Lee, S.-G.

S.-G. Lee and C.-S. Kee, “Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface,” Appl. Opt. 52, 3229–3233 (2013).
[Crossref] [PubMed]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal,” J. Opt. Soc. Am. B 30, 1743–1746 (2013).
[Crossref]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[Crossref] [PubMed]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[Crossref] [PubMed]

J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
[Crossref] [PubMed]

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007).
[Crossref] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[Crossref]

Lemoult, F.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Lerosey, G.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Li, H.

Li, Z.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

Limonov, M. F.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Lin, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based Hybrid Integrated Photonic Devices for Silicon On-chip Modulation and Board-level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Liu, X.

Lu, H.

Lu, Z.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

Lukyanchuk, B.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luo, J.

Maier, S. A.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Mao, D.

Matsuo, S.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mørk, J.

Murakowski, J. A.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

Nguyen, H. M.

Nordlander, P.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[Crossref] [PubMed]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref] [PubMed]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Nozaki, K.

O’Faolain, L.

OFaolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Oh, S. S.

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[Crossref]

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007).
[Crossref] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Park, H. R.

Park, H. Y.

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal,” J. Opt. Soc. Am. B 30, 1743–1746 (2013).
[Crossref]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[Crossref] [PubMed]

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[Crossref]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[Crossref] [PubMed]

J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
[Crossref] [PubMed]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[Crossref] [PubMed]

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007).
[Crossref] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[Crossref]

Park, J. M.

Park, J.-M.

Petrich, G. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Prather, D. W.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Pustai, D. M.

Qiang, Z.

Qiu, H.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

Qiu, Y.

Rakich, P. T.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Rogge, S.

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Rybin, M. V.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Salemink, H. W. M.

Samusev, K. B.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[Crossref] [PubMed]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref] [PubMed]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Schneider, G. J.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

Schuetz, C. A.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

Sharkawy, A.

Shi, S.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[Crossref] [PubMed]

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref] [PubMed]

Singh, R.

Soljaciv, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Song, Z.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

Steel, M. J.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Subbaraman, H.

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref] [PubMed]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Tandon, S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

Tang, D.

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

van der Drift, E. W. J. M.

van der Heijden, R. W.

Wang, G.

Wang, S.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref] [PubMed]

Yang, F.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

Yang, J.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

Yang, W.

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Yao, P.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

Yu, H.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Yu, P.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

Yu, X.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

Yushin, G.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

Zabelin, V.

Zhan, Q.

Zhang, J.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

Zhao, D.

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17, 19808–19813 (2009).
[Crossref] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

Zheludev, N. I.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Zhou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (10)

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[Crossref]

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[Crossref]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[Crossref]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[Crossref]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103, 091104 (2013).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. OFaolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Comput. Phys. Comm. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based Hybrid Integrated Photonic Devices for Silicon On-chip Modulation and Board-level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Mater. (2)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[Crossref] [PubMed]

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Nat. Photonics. (1)

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics. 8, 474–481 (2014).
[Crossref]

Nat. Phys. (1)

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Opt. Express (14)

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[Crossref] [PubMed]

X. Zhang, H. Subbaraman, A. Hosseini, and R. Chen, “Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide,” Opt. Express 22, 20678–20690 (2014).
[Crossref] [PubMed]

J. Lee, D. Kim, G. Kim, O. Kwon, K. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652 (2008).
[Crossref] [PubMed]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 181, 173–190 (2001).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[Crossref] [PubMed]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[Crossref] [PubMed]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[Crossref] [PubMed]

J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
[Crossref] [PubMed]

H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal,” Opt. Express 18, 6437–6446 (2010).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[Crossref] [PubMed]

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17, 19808–19813 (2009).
[Crossref] [PubMed]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry-Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[Crossref] [PubMed]

S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 24, 1866–1878 (1961).
[Crossref]

Phys. Rev. B (2)

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[Crossref]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

Phys. Rev. Lett. (6)

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-Collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103, 023901 (2009).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Four selected EFCs for TE-polarized lights in the PC considered in the study. Since the propagation direction of a light beam is normal to its EFC, a light beam of a low frequency of f = 0.100 (c/a) is allowed to propagate along all directions in the PC. On the other hand, near the band edge, at 0.165 (c/a), 0.190 (c/a), and 0.210 (c/a), a light beam can propagate along mostly the ΓM-direction. In particular a light beam of frequency f = 0.190 (c/a) can propagate along the ΓM-direction with almost no beam spreading because the EFC is nearly flat. (b) Simulated transmission of self-collimated beams through a PC sample of size 24 2 a . Inset shows calculated spatial magnetic field distributions of a propagating self-collimated beam of frequency 0.190 (c/a). The beam has a flat wavefront perpendicular to the propagation direction. The arrow denotes the propagation direction of the beam.
Fig. 2
Fig. 2 Schematic view of the proposed Fano resonator, which has a zigzag line defect composed of 29 air holes with the radius rd different from those of the host holes. The length of the resonator is 16 2 a along the long-axis and the size is 2 2 a along the short-axis (propagation direction). Fano resonance occurs due to the interference between the radiated light beams from the resonator, Lr, and the self-collimated beams that directly pass through the resonator without resonance, Lt.
Fig. 3
Fig. 3 (a) Simulated transmission spectra when the value of rd is zero and 0.05 a. The position of the dip shifts from 0.19786 to 0.19647 (c/a) when the value of rd changes from 0.05 a to zero because of increase in the effective index in the resonator. Magnetic field distributions of propagating light beams with frequencies (b) 0.19647 (c/a), (c) 0.19220 (c/a), and (d) 0.18210 (c/a) when rd = 0. The wavefront of a light beam within the resonator becomes flat as the transmittance increases.
Fig. 4
Fig. 4 Simulated transmission spectra through a resonator composed of two-layer ZLDs for rd of (a) 0.20 a, (b) 0.17 a, and (c) 0.13 a. Transmission spectra through three-layer ZLDs when rd is (d) 0.23 a, (e) 0.21 a, and (f) 0.18 a. The bandwidth of the transmission dip is significantly reduced when the number of defect layers increases from two to three.
Fig. 5
Fig. 5 Phase values of the radiated light beams (a) from two-layer ZLDs with rd = 0.17 a and (b) from three-layer ZLDs with rd = 0.21 a. Fourier-transformed field amplitudes are also plotted to determine the resonant frequencies of the resonators. The gradient of the phase curves are most steep at around the resonant frequencies Γ1 and Γ2. The phase curves are shifted vertically so that the phase values at resonant frequencies Γ1 and Γ2 become π/2.
Fig. 6
Fig. 6 Theoretical Fano line shape obtained by Eq. (1) for the resonators composed of (a) two-layer ZLDs with rd = 0.17 a and (b) three-layer ZLDs with 0.21 a. FDTD data are plotted for comparison. Asymmetry parameters q1 and q2 are calculated though the simulated values (f1, Γ1, Δ1) = (0.19084, 0.19062, 0.0032) and (f2, Γ2, Δ2) = (0.19105, 0.19103, 0.0003), respectively.
Fig. 7
Fig. 7 Magnetic field distributions of light beams of frequency (a) 0.19105 (c/a) and (b) 0.18700 (c/a) when the beams were launched into three-layer ZLDs with rd = 0.21 a.
Fig. 8
Fig. 8 (a) Transmission spectrum of Gaussian self-collimated beams with a waist of 3 a through a resonator composed of three-layer ZLDs when rd = 0.21 a. Magnetic field distributions of a light beam of frequency (b) 0.19105 (c/a), (c) 0.18700 (c/a), and (d) 0.19266 (c/a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( f ) = A 0 [ q + 2 ( f Γ ) / Δ ] 2 1 + [ 2 ( f Γ ) / Δ ] 2 ,

Metrics