Abstract

In this paper, we present the detailed characterization of a semiconductor ring passively mode-locked laser with a 20 GHz repetition rate that was realized as an indium phosphide based photonic integrated circuit (PIC). Various dynamical regimes as a function of operating conditions were explored in the spectral and time domain. A record bandwidth of the optical coherent comb from a quantum well based device of 11.5 nm at 3 dB and sub-picosecond pulse generation is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated 2.5  GHz extended cavity mode-locked ring laser with intracavity phase modulators

Sylwester Latkowski, Valentina Moskalenko, Saeed Tahvili, Luc Augustin, Meint Smit, Kevin Williams, and Erwin Bente
Opt. Lett. 40(1) 77-80 (2015)

1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser

Mu-Chieh Lo, Robinson Guzmán, Muhsin Ali, Rui Santos, Luc Augustin, and Guillermo Carpintero
Opt. Lett. 42(19) 3872-3875 (2017)

Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm

Heike Christopher, Evgeny V. Kovalchuk, Hans Wenzel, Frank Bugge, Markus Weyers, Andreas Wicht, Achim Peters, and Günther Tränkle
Appl. Opt. 56(19) 5566-5572 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [Crossref] [PubMed]
  2. K. Vlachos, N. Pleros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrafast time-domain technology and its application in all-optical signal processing,” J. Lightwave Technol. 21(9), 1857–1868 (2003).
    [Crossref]
  3. G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–663 (2011).
    [Crossref]
  4. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [Crossref]
  5. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  6. M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011).
    [Crossref] [PubMed]
  7. J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
    [Crossref]
  8. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  9. Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.
  10. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6(1), 179 (2004).
    [Crossref]
  11. J. Javaloyes and S. Balle, “Mode-Locking in Semiconductor Fabry-Perrot Lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
    [Crossref]
  12. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
    [Crossref]
  13. M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
    [Crossref]
  14. Joint European Platform for Photonic Integration of InP-based Components and Circuits.” [Online]. Available: http://www.jeppix.eu/ .
  15. V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
    [Crossref]
  16. J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, “Comparison of Comb-line Generation from InGaAsP/InP Integrated Ring Mode-locked Lasers,” in CLEO:2011 - Laser Applications to Photonic Applications, 2011, p. CTuV6.
  17. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
    [Crossref] [PubMed]
  18. G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
    [Crossref]
  19. Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).
  20. T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
    [PubMed]
  21. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010).
    [Crossref] [PubMed]
  22. A. Otani, T. Otsubo, and H. Watanabe, “Chromatic dispersion measurement of EDFA using optical sampling oscilloscope,” in Optical Fiber Communication Conference and Exhibit, OFC 98, Technical Digest1998, 255–256 (1998).

2014 (1)

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

2012 (2)

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref] [PubMed]

2011 (3)

M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011).
[Crossref] [PubMed]

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–663 (2011).
[Crossref]

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

2010 (2)

J. Javaloyes and S. Balle, “Mode-Locking in Semiconductor Fabry-Perrot Lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010).
[Crossref] [PubMed]

2009 (3)

T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
[PubMed]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

2005 (1)

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

2004 (3)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6(1), 179 (2004).
[Crossref]

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

2003 (1)

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

1991 (1)

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Accard, A.

Akrout, A.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Ambrosius, H.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Ambrosius, H. P. M. M.

Avramopoulos, H.

Balle, S.

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

J. Javaloyes and S. Balle, “Mode-Locking in Semiconductor Fabry-Perrot Lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

Barbarin, Y.

M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011).
[Crossref] [PubMed]

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Barry, L. P.

Bente, E.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Bente, E. A. J. M.

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011).
[Crossref] [PubMed]

Bhardwaj, A.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

Binetti, P. R. A.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

Bintjas, C.

Blache, F.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Bolk, J.

Chen, Y. K.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Chin, M. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Coldren, L. A.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

de Vries, T.

Dijk, F. V.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

Duan, G.-H.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Gariah, H.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Grein, M. E.

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

Grote, N.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Habruseva, T.

Haus, H. A.

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

Heck, M. J. R.

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Hegarty, S. P.

Hung, Y.-J.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

Huyet, G.

Ippen, E. P.

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

Javaloyes, J.

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

J. Javaloyes and S. Balle, “Mode-Locking in Semiconductor Fabry-Perrot Lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

Kéfélian, F.

LeGouezigou, O.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Leijtens, X.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Leijtens, X. J. M.

Lelarge, F.

R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref] [PubMed]

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Logan, R. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Mallecot, F.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Martinez, A.

R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref] [PubMed]

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Merghem, K.

R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref] [PubMed]

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Moskalenko, V.

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

Murdoch, S. G.

Nisoli, M.

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–663 (2011).
[Crossref]

Nötzel, R.

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

O’Donoghue, S.

Oei, Y. S.

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Otani, A.

A. Otani, T. Otsubo, and H. Watanabe, “Chromatic dispersion measurement of EDFA using optical sampling oscilloscope,” in Optical Fiber Communication Conference and Exhibit, OFC 98, Technical Digest1998, 255–256 (1998).

Otsubo, T.

A. Otani, T. Otsubo, and H. Watanabe, “Chromatic dispersion measurement of EDFA using optical sampling oscilloscope,” in Optical Fiber Communication Conference and Exhibit, OFC 98, Technical Digest1998, 255–256 (1998).

Parker, J. S.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Pleros, N.

Poletto, L.

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–663 (2011).
[Crossref]

Pommereau, F.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Pozo, J.

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Provost, J.-G.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Ramdane, A.

R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref] [PubMed]

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Rebrova, N.

Reid, D. A.

Robbins, D.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Rorison, J. M.

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Rosales, R.

Sansone, G.

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–663 (2011).
[Crossref]

Schell, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Shen, A.

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Smalbrugge, E.

Smit, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Smit, M. K.

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011).
[Crossref] [PubMed]

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Sotobayashi, H.

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

Tahvili, M. S.

Takushima, Y.

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

Tanbun-Ek, T.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Theophilopoulos, G.

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6(1), 179 (2004).
[Crossref]

Van der Tol, J.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Vlachos, K.

Wale, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Watanabe, H.

A. Otani, T. Otsubo, and H. Watanabe, “Chromatic dispersion measurement of EDFA using optical sampling oscilloscope,” in Optical Fiber Communication Conference and Exhibit, OFC 98, Technical Digest1998, 255–256 (1998).

Watts, R. T.

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6(1), 179 (2004).
[Crossref]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6(1), 179 (2004).
[Crossref]

Wu, M. C.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Appl. Phys. Lett. (1)

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Bell Labs Tech. J. (1)

G.-H. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Javaloyes and S. Balle, “Mode-Locking in Semiconductor Fabry-Perrot Lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit, and E. A. J. M. Bente, “Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach-Zehnder Modulator,” IEEE J. Quantum Electron. 50(6), 415–422 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photon. Technol. Lett. 24(2), 131–133 (2012).
[Crossref]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

IET Optoelectron. (1)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

J. Biomed. Opt. (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Nat. Photonics (2)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5(11), 655–663 (2011).
[Crossref]

New J. Phys. (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6(1), 179 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. SPIE 5595, 213–227 (2004).

Other (4)

A. Otani, T. Otsubo, and H. Watanabe, “Chromatic dispersion measurement of EDFA using optical sampling oscilloscope,” in Optical Fiber Communication Conference and Exhibit, OFC 98, Technical Digest1998, 255–256 (1998).

Y. Barbarin, E. Bente, M. J. R. Heck, J. Pozo, J. M. Rorison, Y. S. Oei, R. Nötzel, and M. K. Smit, “18GHz Fabry-Pérot integrated extended cavity passively modelocked lasers,” in Proc. ECIO, 2007, 7, pp. 25–27.

Joint European Platform for Photonic Integration of InP-based Components and Circuits.” [Online]. Available: http://www.jeppix.eu/ .

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, “Comparison of Comb-line Generation from InGaAsP/InP Integrated Ring Mode-locked Lasers,” in CLEO:2011 - Laser Applications to Photonic Applications, 2011, p. CTuV6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mask layout of a symmetrical ring PMLL. SOA – semiconductor optical amplifier, SA - saturable absorber, ISO – two electrical isolation sections (shown in green), MMI - multimode interference coupler, AR – anti-reflection coating. The total length of the cavity was 4 mm.

Fig. 2
Fig. 2

A map of the spectral bandwidth measured at 3 dB (a) and 10dB (b) level as a function of biasing conditions applied to the SOA and SA sections. Numbers indicate operating points at which the output pulses were characterized in detail.

Fig. 3
Fig. 3

Examples of measured RF spectra for various operating regimes. (a) RF spectrum measured at IBIAS = 142 mA and USA = −2.4 V which is in the mode-locking regime. b) RF spectrum measured at IBIAS = 166 mA and USA = −3.8 V. At these bias conditions the laser exhibits Q-switching instabilities. Detailed RF spectra recorded at (c) IBIAS = 108 mA and USA = 2.4 V and (d) IBIAS = 159 mA and USA = −2.4 V show mode-locking and mode-locking with amplitude modulations (AM) respectively.

Fig. 4
Fig. 4

(a) A map of the RF peak height measured at the same set of operating conditions as in Fig. 2. Areas outlined by a dashed white line correspond to the operating conditions range where mode-locking with amplitude modulation (AM) was observed. (b) Map of the autocorrelation trace full width at half maximum at the same set of operating conditions as in (a).

Fig. 5
Fig. 5

(a) The optical frequency comb recorded at IBIAS = 154.8 mA and USA = −2 V with a 3 dB bandwidth of 11.5 nm (1.41 THz). Red circles represent the linewidth values for each mode. (b) RF spectrum at IBIAS = 154.8 mA and USA = −2 V: The RF peak shows the fundamental frequency of the 4 mm long cavity. Inset: Broadband RF spectrum showing low frequency noise components. (c) Autocorrelation trace (blue circles) fitted by sech2 profile (black curve) at IBIAS = 154.8 mA and USA = −2 V.

Fig. 6
Fig. 6

a) Sketch of the setup for the stepped-heterodyne technique. TLS – tunable laser source, PD – photodetector, RTO – real-time oscilloscope, OSA – optical spectrum analyzer. b) PMLL neighboring modes ωn and ωn + 1, TLS mode ωTLS and the offsets between them δ, Ω and Ω-δ. c) Optical spectrum (blue) in linear scale and phase (red) measured using stepped-heterodyne method at IBIAS = 90 mA and USA = −2 V. d) Optical pulse chirp (blue) and amplitude (red) profile measured using the stepped-heterodyne method. The RMLL is biased at IBIAS = 90 mA and USA = −2 V. e) Measured AC trace (blue circles) at IBIAS = 90 mA and USA = −2 V. AC traces calculated from the amplitude and phase profile shown in (d) with (black) and without (red) taking into consideration a dispersion and gain of EDFA used for amplification of the signal during measurements. f) The optical frequency comb recorded at IBIAS = 90 mA and USA = −2 V. Red circles represent the linewidth values for each mode.

Metrics