Abstract

We present the first microwave photonic phase shifter using stimulated Brillouin scattering (SBS) on-chip. The unique ability of SBS to generate both narrowband gain and loss resonances allows us to achieve low ±1.5 dB amplitude fluctuations, which is a record for integrated devices, along with 240° continuously tunable phase shift. Contrary to previous SBS-based approaches, the phase shift tuning mechanism relies on tuning the power, not the frequency, of two SBS pumps, making it more suited to on-chip implementations. We finally demonstrate that SBS pump depletion leads to amplitude response fluctuations, as well as increasing the insertion loss of the phase shifter. Advantageously, shorter integrated platforms possess higher pump depletion thresholds compared to long fibers, thus offering greater potential for reducing the insertion loss.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

David Marpaung, Blair Morrison, Mattia Pagani, Ravi Pant, Duk-Yong Choi, Barry Luther-Davies, Steve J. Madden, and Benjamin J. Eggleton
Optica 2(2) 76-83 (2015)

Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering

Adam Byrnes, Ravi Pant, Enbang Li, Duk-Yong Choi, Christopher G. Poulton, Shanhui Fan, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Express 20(17) 18836-18845 (2012)

Ultra-wideband microwave photonic phase shifter with configurable amplitude response

M. Pagani, D. Marpaung, and B. J. Eggleton
Opt. Lett. 39(20) 5854-5857 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
    [Crossref]
  3. S. Winnall, A. Lindsay, and G. Knight, “A wide-band microwave photonic phase and frequency shifter,” Microwave Theory Tech., IEEE Trans. 45, 1003–1006 (1997).
    [Crossref]
  4. J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic rf phase shifter based on a dual-parallel machzehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
    [Crossref]
  5. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37, 4483–4485 (2012).
    [Crossref] [PubMed]
  6. E. Chan, W. Zhang, and R. Minasian, “Photonic rf phase shifter based on optical carrier and rf modulation sidebands amplitude and phase control,” J. Lightw. Technol. 30, 3672–3678 (2012).
    [Crossref]
  7. W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, “Photonic-assisted microwave phase shifter using a dmzm and an optical bandpass filter,” Opt. Express 22, 5522–5527 (2014).
    [Crossref] [PubMed]
  8. A. Loayssa and F. Lahoz, “Broad-band rf photonic phase shifter based on stimulated brillouin scattering and single-sideband modulation,” Photon. Technol. Lett., IEEE 18, 208–210 (2006).
    [Crossref]
  9. M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett.39 (2014).
    [Crossref] [PubMed]
  10. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, “Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a mach-zehnder interferometer,” Opt. Lett. 32, 745–747 (2007).
    [Crossref] [PubMed]
  11. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18, 6156–6163 (2010).
    [Crossref] [PubMed]
  12. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19, 17421–17426 (2011).
    [Crossref] [PubMed]
  13. W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber bragg grating,” Opt. Express 20, 29838–29843 (2012).
    [Crossref]
  14. H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber bragg grating,” Opt. Express 20, 14009–14014 (2012).
    [Crossref] [PubMed]
  15. W. Liu, W. Li, and J. Yao, “An ultra-wideband microwave photonic phase shifter with a full 360° phase tunable range,” Photon. Technol. Lett., IEEE 25, 1107–1110 (2013).
    [Crossref]
  16. W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped fbg,” Opt. Lett. 39, 922–924 (2014).
    [Crossref] [PubMed]
  17. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  18. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18, 6172–6182 (2010).
    [Crossref] [PubMed]
  19. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip cmos compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
    [Crossref] [PubMed]
  20. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
    [Crossref] [PubMed]
  21. J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22, 8094–8100 (2014).
    [Crossref] [PubMed]
  22. J. E. Román, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23, 939–941 (1998).
    [Crossref]
  23. A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier brillouin processing of microwave photonic signals,” Opt. Lett. 25, 1234–1236 (2000).
    [Crossref]
  24. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref] [PubMed]
  25. D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
    [Crossref]
  26. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  27. R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
    [Crossref]
  28. R. W. Boyd, Nonlinear optics (Academic Press, 2008), Chap. 9.
  29. M. Pagani, E. Chan, and R. Minasian, “A study of the linearity performance of a stimulated brillouin scattering-based microwave photonic bandpass filter,” J. Lightw. Technol. 32, 999–1005 (2014).
    [Crossref]
  30. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
    [Crossref] [PubMed]
  31. C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).
    [Crossref]

2014 (6)

W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, “Photonic-assisted microwave phase shifter using a dmzm and an optical bandpass filter,” Opt. Express 22, 5522–5527 (2014).
[Crossref] [PubMed]

W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped fbg,” Opt. Lett. 39, 922–924 (2014).
[Crossref] [PubMed]

J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22, 8094–8100 (2014).
[Crossref] [PubMed]

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

M. Pagani, E. Chan, and R. Minasian, “A study of the linearity performance of a stimulated brillouin scattering-based microwave photonic bandpass filter,” J. Lightw. Technol. 32, 999–1005 (2014).
[Crossref]

2013 (4)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
[Crossref] [PubMed]

W. Liu, W. Li, and J. Yao, “An ultra-wideband microwave photonic phase shifter with a full 360° phase tunable range,” Photon. Technol. Lett., IEEE 25, 1107–1110 (2013).
[Crossref]

2012 (5)

2011 (3)

2010 (2)

2008 (1)

2007 (2)

2006 (1)

A. Loayssa and F. Lahoz, “Broad-band rf photonic phase shifter based on stimulated brillouin scattering and single-sideband modulation,” Photon. Technol. Lett., IEEE 18, 208–210 (2006).
[Crossref]

2000 (1)

1998 (1)

1997 (1)

S. Winnall, A. Lindsay, and G. Knight, “A wide-band microwave photonic phase and frequency shifter,” Microwave Theory Tech., IEEE Trans. 45, 1003–1006 (1997).
[Crossref]

Azaña, J.

Benito, D.

Boyd, R. W.

R. W. Boyd, Nonlinear optics (Academic Press, 2008), Chap. 9.

Burla, M.

Capmany, J.

Chan, E.

M. Pagani, E. Chan, and R. Minasian, “A study of the linearity performance of a stimulated brillouin scattering-based microwave photonic bandpass filter,” J. Lightw. Technol. 32, 999–1005 (2014).
[Crossref]

E. Chan, W. Zhang, and R. Minasian, “Photonic rf phase shifter based on optical carrier and rf modulation sidebands amplitude and phase control,” J. Lightw. Technol. 30, 3672–3678 (2012).
[Crossref]

Chen, J.

J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic rf phase shifter based on a dual-parallel machzehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[Crossref]

Cheng, T. H.

Choi, D.-Y.

Chrostowski, L.

Cortés, L. R.

Cox, C. H.

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).
[Crossref]

Ding, Y.

Domenech, D.

Dong, Y.

Eggleton, B.

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
[Crossref]

Eggleton, B. J.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref] [PubMed]

M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett.39 (2014).
[Crossref] [PubMed]

Esman, R. D.

Eyal, A.

Frankel, M. Y.

Garde, M. J.

Gasulla, I.

He, H.

Heideman, R.

Hile, S.

Hoekman, M.

Hu, W.

Hvam, J. M.

Kabakova, I. V.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

Khan, M. R.

Knight, G.

S. Winnall, A. Lindsay, and G. Knight, “A wide-band microwave photonic phase and frequency shifter,” Microwave Theory Tech., IEEE Trans. 45, 1003–1006 (1997).
[Crossref]

Kuang, W.

Lahoz, F.

A. Loayssa and F. Lahoz, “Broad-band rf photonic phase shifter based on stimulated brillouin scattering and single-sideband modulation,” Photon. Technol. Lett., IEEE 18, 208–210 (2006).
[Crossref]

Leinse, A.

Li, E.

Li, M.

Li, W.

Li, Z.

Lindsay, A.

S. Winnall, A. Lindsay, and G. Knight, “A wide-band microwave photonic phase and frequency shifter,” Microwave Theory Tech., IEEE Trans. 45, 1003–1006 (1997).
[Crossref]

Liu, J. G.

Liu, L.

Liu, W.

W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped fbg,” Opt. Lett. 39, 922–924 (2014).
[Crossref] [PubMed]

W. Liu, W. Li, and J. Yao, “An ultra-wideband microwave photonic phase shifter with a full 360° phase tunable range,” Photon. Technol. Lett., IEEE 25, 1107–1110 (2013).
[Crossref]

Lloret, J.

Loayssa, A.

A. Loayssa and F. Lahoz, “Broad-band rf photonic phase shifter based on stimulated brillouin scattering and single-sideband modulation,” Photon. Technol. Lett., IEEE 18, 208–210 (2006).
[Crossref]

A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier brillouin processing of microwave photonic signals,” Opt. Lett. 25, 1234–1236 (2000).
[Crossref]

Lu, C.

Luther-Davies, B.

Madden, S. J.

Mailloux, R. J.

R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).

Marpaung, D.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip cmos compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref] [PubMed]

M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett.39 (2014).
[Crossref] [PubMed]

Mcfarlane, H.

Minasian, R.

M. Pagani, E. Chan, and R. Minasian, “A study of the linearity performance of a stimulated brillouin scattering-based microwave photonic bandpass filter,” J. Lightw. Technol. 32, 999–1005 (2014).
[Crossref]

E. Chan, W. Zhang, and R. Minasian, “Photonic rf phase shifter based on optical carrier and rf modulation sidebands amplitude and phase control,” J. Lightw. Technol. 30, 3672–3678 (2012).
[Crossref]

Mørk, J.

Morrison, B.

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

Muñoz, P.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[Crossref]

Ou, H.

Pagani, M.

M. Pagani, E. Chan, and R. Minasian, “A study of the linearity performance of a stimulated brillouin scattering-based microwave photonic bandpass filter,” J. Lightw. Technol. 32, 999–1005 (2014).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
[Crossref]

M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett.39 (2014).
[Crossref] [PubMed]

Pan, S.

Pant, R.

Poulton, C. G.

Pu, M.

Roeloffzen, C.

Román, J. E.

Sales, S.

Sancho, J.

Shahoei, H.

Shen, J.

J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic rf phase shifter based on a dual-parallel machzehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[Crossref]

Sun, W. H.

Thevenaz, L.

Thévenaz, L.

Tur, M.

Wang, L. X.

Wang, Q.

Wang, W. T.

Wang, X.

Wang, Y.

Wen, Y. J.

Winnall, S.

S. Winnall, A. Lindsay, and G. Knight, “A wide-band microwave photonic phase and frequency shifter,” Microwave Theory Tech., IEEE Trans. 45, 1003–1006 (1997).
[Crossref]

Wu, G.

J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic rf phase shifter based on a dual-parallel machzehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[Crossref]

Xue, W.

Yao, J.

Yvind, K.

Zadok, A.

Zhang, W.

E. Chan, W. Zhang, and R. Minasian, “Photonic rf phase shifter based on optical carrier and rf modulation sidebands amplitude and phase control,” J. Lightw. Technol. 30, 3672–3678 (2012).
[Crossref]

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber bragg grating,” Opt. Express 20, 29838–29843 (2012).
[Crossref]

Zhang, Y.

Zhu, N. H.

Zhuang, L.

Zilka, E.

Zou, W.

J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic rf phase shifter based on a dual-parallel machzehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Express (1)

J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic rf phase shifter based on a dual-parallel machzehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[Crossref]

J. Lightw. Technol. (3)

E. Chan, W. Zhang, and R. Minasian, “Photonic rf phase shifter based on optical carrier and rf modulation sidebands amplitude and phase control,” J. Lightw. Technol. 30, 3672–3678 (2012).
[Crossref]

M. Pagani, E. Chan, and R. Minasian, “A study of the linearity performance of a stimulated brillouin scattering-based microwave photonic bandpass filter,” J. Lightw. Technol. 32, 999–1005 (2014).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightw. Technol. 32, 3421–3427 (2014).
[Crossref]

Laser Photon. Rev. (2)

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev. 8, 653–666 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Microwave Theory Tech., IEEE Trans. (1)

S. Winnall, A. Lindsay, and G. Knight, “A wide-band microwave photonic phase and frequency shifter,” Microwave Theory Tech., IEEE Trans. 45, 1003–1006 (1997).
[Crossref]

Nat. Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[Crossref]

Opt. Express (11)

W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, “Photonic-assisted microwave phase shifter using a dmzm and an optical bandpass filter,” Opt. Express 22, 5522–5527 (2014).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18, 6172–6182 (2010).
[Crossref] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip cmos compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011).
[Crossref] [PubMed]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide bragg gratings for microwave photonics signal processing,” Opt. Express 21, 25120–25147 (2013).
[Crossref] [PubMed]

J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22, 8094–8100 (2014).
[Crossref] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18, 6156–6163 (2010).
[Crossref] [PubMed]

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19, 17421–17426 (2011).
[Crossref] [PubMed]

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber bragg grating,” Opt. Express 20, 29838–29843 (2012).
[Crossref]

H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber bragg grating,” Opt. Express 20, 14009–14014 (2012).
[Crossref] [PubMed]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Photon. Technol. Lett., IEEE (2)

A. Loayssa and F. Lahoz, “Broad-band rf photonic phase shifter based on stimulated brillouin scattering and single-sideband modulation,” Photon. Technol. Lett., IEEE 18, 208–210 (2006).
[Crossref]

W. Liu, W. Li, and J. Yao, “An ultra-wideband microwave photonic phase shifter with a full 360° phase tunable range,” Photon. Technol. Lett., IEEE 25, 1107–1110 (2013).
[Crossref]

Other (4)

M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett.39 (2014).
[Crossref] [PubMed]

R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).
[Crossref]

R. W. Boyd, Nonlinear optics (Academic Press, 2008), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of the SBS-based phase shifter. The SBS process takes place in the chalcogenide (ChG) waveguide, and is used to change the phase of the optical carrier.

Fig. 2
Fig. 2

Operating principle for the SBS-based MWP phase shifter, as presented in [8]. (a) The gain and loss resonances from an SBS Stokes (Pump 1) and pump (Pump 2) wave cancel out, while (b) their phase contributions add up, at the carrier frequency.

Fig. 3
Fig. 3

Phase shift tuning mechanism using (a) technique reported in [8]; (b) current energy efficient technique.

Fig. 4
Fig. 4

Experimental setup for the SBS-based MWP phase shifter. PC: polarisation controller; MZM: Mach-Zehnder modulator; DPMZM: dual-parallel MZM; SG: signal generator; EDFA: erbium-doped fiber amplifier; ChG: chalcogenide; VNA: vector network analyser.

Fig. 5
Fig. 5

Measured (normalized) frequency response for the SBS-based MWP phase shifter.

Fig. 6
Fig. 6

Carrier attenuation, as a function of carrier power, at the output of the SBS medium for (a) 0° phase shift; (b) 180° phase shift.

Fig. 7
Fig. 7

(a) Pump spectra after the SBS interaction, for different carrier powers, and normalized for a 1550 nm wavelength. (b) Phase shifter magnitude response using both the current technique, and the conventional technique reported in [8], with a 20 dBm carrier power.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d P p 1 d z = g 0 A ao [ Γ B 2 Γ B 2 + 4 ( Ω B Ω ) 2 ] P p 1 P c α P p 1
d P p 2 d z = g 0 A ao [ Γ B 2 Γ B 2 + 4 ( Ω B Ω ) 2 ] P p 2 P c α P p 2
d P c d z = g 0 A ao [ Γ B 2 Γ B 2 + 4 ( Ω B Ω ) 2 ] ( P p 1 P p 2 ) P c + α P c
d θ c d z = g 0 Γ B A ao [ Ω B Ω Γ B 2 + 4 ( Ω B Ω ) 2 ] ( P p 1 + P p 2 ) .
P p 1 ( z ) = P p 2 ( z )
d P p 1 d z d P p 2 d z α P p 1 .
P p 1 ( 0 ) = P p 2 ( 0 ) = 2 π A ao g 0 L eff
Ω = Ω B ± Γ B 2
P p 1 ( 0 ) = P p 2 ( 0 ) = 2 A ao g 0 L eff | ϕ | .

Metrics