Abstract

We investigate defects forming in Ce3+-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-S. Lim and D. S. Hamilton, “Optical gain and loss studies in Ce3+:YLiF4,” J. Opt. Soc. Am. B 6(7), 1401–1406 (1989).
    [Crossref]
  2. J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–850 (1961).
    [Crossref]
  3. M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
    [Crossref]
  4. A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
    [Crossref]
  5. A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium (III) and cerium(IV) in simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
    [Crossref]
  6. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials Springer Series in Materials Science (Springer, 2005), Vol. 83.
  7. A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
    [Crossref]
  8. G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).
  9. M. Yamaga, Y. Ohsumi, T. Nakayama, and T. P. J. Han, “Persistent phosphorescence in Ce-doped Lu2SiO5,” Opt. Mater. Express 2(4), 413–419 (2012).
    [Crossref]
  10. N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
    [Crossref]
  11. M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
    [Crossref]
  12. D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
    [Crossref]
  13. M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
    [Crossref]
  14. K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
    [Crossref]
  15. K. H. Yang and J. A. DeLuca, “UV fluorescence of cerium doped lutetium and lanthanum trifluorides, potential tunable coherent sources from 2760 to 3220 Å,” Appl. Phys. Lett. 31(9), 594–597 (1977).
    [Crossref]
  16. D. J. Ehrlich, P. F. Moulton, and R. M. Osgood., “Ultraviolet solid-state Ce:YLF laser at 325 nm,” Opt. Lett. 4(6), 184–186 (1979).
    [Crossref] [PubMed]
  17. G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
    [Crossref]
  18. G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
    [Crossref]
  19. A. Kucuk and A. G. Clare, “Optical properties of cerium and europium doped fluoroaluminate glasses,” Opt. Mater. 13(3), 279–287 (1999).
    [Crossref]
  20. T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
    [Crossref]
  21. G. K. DasMohapatra, “A spectroscopic study of cerium in lithium–alumino–borate glass,” Mater. Lett. 35(1-2), 120–125 (1998).
    [Crossref]
  22. T. I. Prokhorova and O. M. Ostrogina, “The spectral-luminescence properties of vitrous silicas containing cerium,” Fiz. Khim. Stekla 7, 678–685 (1981).
  23. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
    [Crossref]
  24. R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
    [Crossref]
  25. J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
    [Crossref]

2012 (1)

2011 (1)

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

2010 (1)

M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

2007 (2)

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

2006 (1)

K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
[Crossref]

2005 (1)

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

2004 (1)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

2003 (1)

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

2002 (2)

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

2000 (1)

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

1999 (2)

A. Kucuk and A. G. Clare, “Optical properties of cerium and europium doped fluoroaluminate glasses,” Opt. Mater. 13(3), 279–287 (1999).
[Crossref]

R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
[Crossref]

1998 (1)

G. K. DasMohapatra, “A spectroscopic study of cerium in lithium–alumino–borate glass,” Mater. Lett. 35(1-2), 120–125 (1998).
[Crossref]

1997 (1)

J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
[Crossref]

1996 (1)

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

1994 (1)

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

1989 (1)

1981 (1)

T. I. Prokhorova and O. M. Ostrogina, “The spectral-luminescence properties of vitrous silicas containing cerium,” Fiz. Khim. Stekla 7, 678–685 (1981).

1979 (1)

1977 (1)

K. H. Yang and J. A. DeLuca, “UV fluorescence of cerium doped lutetium and lanthanum trifluorides, potential tunable coherent sources from 2760 to 3220 Å,” Appl. Phys. Lett. 31(9), 594–597 (1977).
[Crossref]

1976 (1)

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium (III) and cerium(IV) in simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

1961 (1)

J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–850 (1961).
[Crossref]

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Baccaro, S.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Baraldi, A.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

Bayramian, A. J.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Blinkova, G. B.

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

Brandily-Anne, M.

M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Capelletti, R.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

Castillo, V. K.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Chiodini, N.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

Clare, A. G.

A. Kucuk and A. G. Clare, “Optical properties of cerium and europium doped fluoroaluminate glasses,” Opt. Mater. 13(3), 279–287 (1999).
[Crossref]

DasMohapatra, G. K.

G. K. DasMohapatra, “A spectroscopic study of cerium in lithium–alumino–borate glass,” Mater. Lett. 35(1-2), 120–125 (1998).
[Crossref]

DeLuca, J. A.

K. H. Yang and J. A. DeLuca, “UV fluorescence of cerium doped lutetium and lanthanum trifluorides, potential tunable coherent sources from 2760 to 3220 Å,” Appl. Phys. Lett. 31(9), 594–597 (1977).
[Crossref]

Dorenbos, P.

K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
[Crossref]

Efimov, A. M.

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Ehrlich, D. J.

Fabeni, P.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Fasoli, M.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

Gaft, M.

R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
[Crossref]

Glebov, L. B.

M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Glebova, L.

M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Gudel, H. U.

K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
[Crossref]

Hackel, R. P.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Hamilton, D. S.

Han, T. P. J.

Hirao, K.

J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
[Crossref]

Honda, M.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Honig, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Ignatev, A. I.

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Islamov, A. Kh.

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

Iwabuchi, Y.

J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
[Crossref]

Jia, D.

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

Khaidarova, Kh. A.

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

Kodama, N.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Kramer, K. W.

K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
[Crossref]

Kucuk, A.

A. Kucuk and A. G. Clare, “Optical properties of cerium and europium doped fluoroaluminate glasses,” Opt. Mater. 13(3), 279–287 (1999).
[Crossref]

Lim, K.-S.

Lumeau, J.

M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Mares, J. A.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Marshall, C. D.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Martini, M.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Mihokova, E.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Morinaga, K.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Moulton, P. F.

Mulholland, M.

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium (III) and cerium(IV) in simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

Murata, T.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Nakayama, T.

Nikl, M.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Nikonorov, N. V.

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Nitsch, K.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Nostrand, M. C.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Nuritrinov, I.

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

Ohsumi, Y.

Osgood, R. M.

Ostrogina, O. M.

T. I. Prokhorova and O. M. Ostrogina, “The spectral-luminescence properties of vitrous silicas containing cerium,” Fiz. Khim. Stekla 7, 678–685 (1981).

Panczer, G.

R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
[Crossref]

Patra, A.

R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
[Crossref]

Paul, A.

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium (III) and cerium(IV) in simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

Payne, S. A.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Pazzi, G. P.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Postnikov, E. S.

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Prokhorova, T. I.

T. I. Prokhorova and O. M. Ostrogina, “The spectral-luminescence properties of vitrous silicas containing cerium,” Fiz. Khim. Stekla 7, 678–685 (1981).

Qiu, J.

J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
[Crossref]

Quarles, G. J.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Reisfeld, R.

R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
[Crossref]

Rosetta, E.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

Sato, M.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Solovieva, N.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Speth, J. A.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Spinolo, G.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Stroud, J. S.

J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–850 (1961).
[Crossref]

Sugimoto, N.

J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
[Crossref]

Takahashi, T.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Tang, W. M.

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

Tanii, Y.

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Vakhidov, Sh. A.

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

van Eijk, C. W. E.

K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
[Crossref]

Vedda, A.

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Wegner, P. J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Wu, J. H.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

Wu, Y. C.

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

Xu, G. Q.

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

Yamaga, M.

M. Yamaga, Y. Ohsumi, T. Nakayama, and T. P. J. Han, “Persistent phosphorescence in Ce-doped Lu2SiO5,” Opt. Mater. Express 2(4), 413–419 (2012).
[Crossref]

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Yang, K. H.

K. H. Yang and J. A. DeLuca, “UV fluorescence of cerium doped lutetium and lanthanum trifluorides, potential tunable coherent sources from 2760 to 3220 Å,” Appl. Phys. Lett. 31(9), 594–597 (1977).
[Crossref]

Yen, W. M.

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

Yoshida, H.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Zaman, M. S.

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium (III) and cerium(IV) in simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

Zheng, Z. X.

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

Appl. Phys. Lett. (3)

N. Chiodini, M. Fasoli, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Nikl, N. Solovieva, A. Baraldi, and R. Capelletti, “High-efficiency SiO2:Ce3+ glass scintillators,” Appl. Phys. Lett. 81(23), 4374–4377 (2002).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+ -doped Na–Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

K. H. Yang and J. A. DeLuca, “UV fluorescence of cerium doped lutetium and lanthanum trifluorides, potential tunable coherent sources from 2760 to 3220 Å,” Appl. Phys. Lett. 31(9), 594–597 (1977).
[Crossref]

Fiz. Khim. Stekla (1)

T. I. Prokhorova and O. M. Ostrogina, “The spectral-luminescence properties of vitrous silicas containing cerium,” Fiz. Khim. Stekla 7, 678–685 (1981).

Glass Phys. Chem. (1)

G. B. Blinkova, Sh. A. Vakhidov, A. Kh. Islamov, I. Nuritrinov, and Kh. A. Khaidarova, “On the Nature of Yellow Coloring in Cerium-Containing Silica Glasses,” Glass Phys. Chem. 20, 283–287 (1994).

J. Chem. Phys. (1)

J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–850 (1961).
[Crossref]

J. Electrochem. Soc. (1)

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

J. Lumin. (3)

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin. 124(1), 151–156 (2007).
[Crossref]

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce: LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69(2), 85–94 (1996).
[Crossref]

J. Mater. Chem. (1)

K. W. Kramer, P. Dorenbos, H. U. Gudel, and C. W. E. van Eijk, “Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials,” J. Mater. Chem. 16, 2773–2780 (2006).
[Crossref]

J. Mater. Sci. (1)

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium (III) and cerium(IV) in simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

J. Non-Cryst. Solids (3)

M. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

J. Qiu, N. Sugimoto, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Ce 3+-doped silicate glasses,” J. Non-Cryst. Solids 209(1-2), 200–203 (1997).
[Crossref]

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

G. K. DasMohapatra, “A spectroscopic study of cerium in lithium–alumino–borate glass,” Mater. Lett. 35(1-2), 120–125 (1998).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (2)

A. Kucuk and A. G. Clare, “Optical properties of cerium and europium doped fluoroaluminate glasses,” Opt. Mater. 13(3), 279–287 (1999).
[Crossref]

R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Opt. Mater. 13(1), 81–88 (1999).
[Crossref]

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral Components that Form UV Absorption Spectrum of Ce3+ and Ce(IV) Valence States in Matrix of Photothermorefractive Glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Phys. Rev. B (1)

M. Yamaga, Y. Tanii, N. Kodama, T. Takahashi, and M. Honda, “Mechanism of long-lasting phosphorescence process of Ce3+-doped Ca2(a)l2SiO7 melilite crystals,” Phys. Rev. B 65(23), 235108 (2002).
[Crossref]

Proc. SPIE (1)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Other (1)

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials Springer Series in Materials Science (Springer, 2005), Vol. 83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic layout of experimental systems and main components used in this work.

Fig. 2
Fig. 2

a) The transmittance spectra including losses from reflections of a pure (#1) and a Ce-doped fused silica sample before (#2) and after (#3) exposure to high fluence UV pulses along with b) the spectral and temporal profile of the generated photoluminescence during exposure to 355 nm pulses.

Fig. 3
Fig. 3

a) The phosphorescence spectrum with inset showing the decay temporal profile. b) Profile (#1): emission observed during exposure of solarized sites to 530 nm light; Peak (#2): Rayleigh scattered light; Profile (#3): difference spectrum. c) Schematic depiction of the excitation and relaxation pathways leading the emission spectra observed.

Fig. 4
Fig. 4

a) Side view and b) front view images of a solarized site. c) Estimation using the experimental results of the induced by solarization absorption coefficient at 530 nm as a function of the laser fluence.

Fig. 5
Fig. 5

The measured transmittance at 530 nm of solarized material as a function of exposure time to 460 nm CW light under radiative flux densities of about 3.5 (#1), 8.8 (#2) and 21 (#3) mW/cm2. Inset shows the same results when plotted as a function of the accumulative exposure to the 460 nm light.

Fig. 6
Fig. 6

a) The measured transmittance loss of the solarized material as a function of the exposure time and accumulative exposure and b) the normalized transmittance recovery rate as a function of the exposure time for the four CW exposure wavelengths used.

Fig. 7
Fig. 7

The transmittance of 1064 nm laser pulse propagating in the material before, during and after exposure to 355 nm laser pulses. The inset shows the 1064 nm beam profiles of a) reference pulse and b) pulse propagating in the presence of the 355 nm pulse while c) is the normalized transmitted beam profile.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( φ ) = 0. 1 × exp ( φ ) + 0. 2 × exp ( φ / 0. 17 ) + 0.0 15 × exp ( φ / 3 0 )  
Δ A ( t ) / A ( t ) = c ( λ ) × t k ( λ )
c ( 66 0 ) 0. 18 × c ( 4 00 ) ,     c ( 53 0 ) 0. 31 × c ( 4 00 ) ,     c ( 46 0 ) 0. 53 × c ( 4 00 )

Metrics