Abstract

We demonstrate the use of shaped 10 fs pulses for multimodal microscopy. The combination of a broadband oscillator and a pulse shaper provides a flexible light source that can be optimized for various nonlinear effects produced in the sample, either for signal intensity or for selectivity. While the highest nonlinear generation efficiency is achieved with the shortest pulses, more complex waveforms address specific transitions in the sample for better contrast. This is shown experimentally with the imaging of a moss leaf and of human skin biopsies using coherent anti-Stokes Raman scattering, two-photon fluorescence and second harmonic generation signals.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  2. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  3. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” in Annual Review of Physical Chemistry, Vol 62, S. R. Leone, P. S. Cremer, J. T. Groves, and M. A. Johnson, eds. (2011), pp. 507–530.
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  5. H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
    [Crossref] [PubMed]
  6. H. T. Chen, H. F. Wang, M. N. Slipchenko, Y. K. Jung, Y. Z. Shi, J. B. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [Crossref] [PubMed]
  7. Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
    [Crossref] [PubMed]
  8. Q. Sun, Y. Li, S. He, C. Situ, Z. Wu, and J. Y. Qu, “Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development,” Biomed. Opt. Express 5(1), 158–166 (2014).
    [Crossref] [PubMed]
  9. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
    [Crossref] [PubMed]
  10. X. Xu, J. Cheng, M. J. Thrall, Z. Liu, X. Wang, and S. T. C. Wong, “Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues,” Biomed. Opt. Express 4(12), 2855–2868 (2013).
    [Crossref] [PubMed]
  11. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
    [Crossref] [PubMed]
  12. J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
    [Crossref] [PubMed]
  13. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  14. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
    [Crossref] [PubMed]
  15. F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
    [Crossref]
  16. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
    [Crossref] [PubMed]
  17. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
    [Crossref] [PubMed]
  18. C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
    [Crossref]
  19. J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
    [Crossref] [PubMed]
  20. C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
    [Crossref] [PubMed]
  21. A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
    [Crossref]
  22. A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
    [Crossref]
  23. J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  24. A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77(2-3), 369–376 (2003).
    [Crossref]
  25. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  26. W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment,” Journal of Raman Spectroscopy 40(7), 800–808 (2009).
    [Crossref]
  27. B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
    [Crossref] [PubMed]
  28. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref] [PubMed]
  29. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
    [Crossref] [PubMed]

2014 (2)

Q. Sun, Y. Li, S. He, C. Situ, Z. Wu, and J. Y. Qu, “Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development,” Biomed. Opt. Express 5(1), 158–166 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

2013 (2)

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
[Crossref]

X. Xu, J. Cheng, M. J. Thrall, Z. Liu, X. Wang, and S. T. C. Wong, “Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues,” Biomed. Opt. Express 4(12), 2855–2868 (2013).
[Crossref] [PubMed]

2011 (6)

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

2010 (3)

J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
[Crossref] [PubMed]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

2009 (4)

C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
[Crossref]

H. T. Chen, H. F. Wang, M. N. Slipchenko, Y. K. Jung, Y. Z. Shi, J. B. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment,” Journal of Raman Spectroscopy 40(7), 800–808 (2009).
[Crossref]

2008 (2)

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[Crossref] [PubMed]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[Crossref] [PubMed]

2006 (2)

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[Crossref] [PubMed]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[Crossref] [PubMed]

2005 (2)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2004 (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2003 (2)

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77(2-3), 369–376 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Akimov, D.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Beaurepaire, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Bergner, N.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Bielecki, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Borri, P.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment,” Journal of Raman Spectroscopy 40(7), 800–808 (2009).
[Crossref]

Bourgine, P.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Buckup, T.

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
[Crossref]

J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
[Crossref] [PubMed]

C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
[Crossref]

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[Crossref] [PubMed]

Buhman, K. K.

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[Crossref] [PubMed]

Chen, B. C.

B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Chen, H. T.

Chen, S.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Cheng, J.

Cheng, J. X.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

H. T. Chen, H. F. Wang, M. N. Slipchenko, Y. K. Jung, Y. Z. Shi, J. B. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[Crossref] [PubMed]

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[Crossref] [PubMed]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Débarre, D.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Dietzek, B.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Duloquin, L.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Faure, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Goulart, C.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Gross, P.

He, S.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Herek, J. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Huang, Z. W.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

Jafarpour, A.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

Jia, Y.

Jung, Y. K.

Jurna, M.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

Kalff, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Korterik, J. P.

Krafft, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Langbein, W.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment,” Journal of Raman Spectroscopy 40(7), 800–808 (2009).
[Crossref]

Le, T. T.

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[Crossref] [PubMed]

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[Crossref] [PubMed]

Li, Y.

Lim, S. H.

B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lin, J.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

Liu, Z.

Lu, F. K.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

Luengo-Oroz, M. A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Meyer, T.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Motzkus, M.

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
[Crossref]

J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
[Crossref] [PubMed]

C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
[Crossref]

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[Crossref] [PubMed]

Müller, C.

C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
[Crossref]

Naumov, A. N.

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77(2-3), 369–376 (2003).
[Crossref]

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[Crossref] [PubMed]

Offerhaus, H. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[Crossref] [PubMed]

Olivier, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Peyriéras, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Pezacki, J. P.

Pohling, C.

Popp, J.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Postma, S.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Qu, J. Y.

Rehbinder, J.

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
[Crossref]

J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
[Crossref] [PubMed]

Reichart, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Ridsdale, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Rocha-Mendoza, I.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment,” Journal of Raman Spectroscopy 40(7), 800–808 (2009).
[Crossref]

Romeike, B. F. M.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Santos, A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Savy, T.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Sharping, J. E.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Shi, Y. Z.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Situ, C.

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Slipchenko, M. N.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

H. T. Chen, H. F. Wang, M. N. Slipchenko, Y. K. Jung, Y. Z. Shi, J. B. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[Crossref] [PubMed]

Solinas, X.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Stolow, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

Sun, Q.

Sung, J. H.

B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Tai, D. A.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Thrall, M. J.

Tong, W. J.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

van Rhijn, A. C. W.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[Crossref] [PubMed]

Veilleux, I.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

von Vacano, B.

C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
[Crossref]

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[Crossref] [PubMed]

Wang, H. F.

Wang, H. W.

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[Crossref] [PubMed]

Wang, X.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wei, H. F.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wipfler, A.

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
[Crossref]

Wong, S. T. C.

Wu, X. X.

B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Wu, Z.

Xie, X. S.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Xu, B. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Xu, S. Y.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Xu, X.

Yu, H.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Zhai, Y. H.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Zhang, D.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Zheltikov, A. M.

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77(2-3), 369–376 (2003).
[Crossref]

Zheng, W.

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

Zhu, J. B.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Appl. Phys. B (1)

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77(2-3), 369–376 (2003).
[Crossref]

Appl. Phys. Lett. (3)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Y. H. Zhai, C. Goulart, J. E. Sharping, H. F. Wei, S. Chen, W. J. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

F. K. Lu, W. Zheng, J. Lin, and Z. W. Huang, “Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser,” Appl. Phys. Lett. 96(13), 133701 (2010).
[Crossref]

Biomed. Opt. Express (2)

J Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

B. C. Chen, J. H. Sung, X. X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

J. Lin, F. K. Lu, W. Zheng, S. Y. Xu, D. A. Tai, H. Yu, and Z. W. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Journal of Raman Spectroscopy (4)

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment,” Journal of Raman Spectroscopy 40(7), 800–808 (2009).
[Crossref]

C. Müller, T. Buckup, B. von Vacano, and M. Motzkus, “Heterodyne single-beam CARS microscopy,” Journal of Raman Spectroscopy 40(7), 809–816 (2009).
[Crossref]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy 42(10), 1859–1863 (2011).
[Crossref]

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Elimination of two-photon excited fluorescence using a single-beam coherent anti-Stokes Raman scattering setup,” Journal of Raman Spectroscopy 44(10), 1379–1384 (2013).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Science (1)

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy,” Science 329(5994), 967–971 (2010).
[Crossref] [PubMed]

Other (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” in Annual Review of Physical Chemistry, Vol 62, S. R. Leone, P. S. Cremer, J. T. Groves, and M. A. Johnson, eds. (2011), pp. 507–530.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for multimodal imaging using a sub-10 fs oscillator. G1,2: Gratings, CM1,2: cylindrical mirrors, SLM: spatial light modulator, Pol.: polarizer. Detection: two schemes can be chosen alternatively. Scheme I: spectrally resolved detection. Scheme II: combination of single channel detectors and interference filters for rapid imaging.

Fig. 2
Fig. 2

Principle of the spectral focusing shaping scheme. Left panel: Jablonski diagram of the CARS effect. Arrows show various photonic pathways for the excitation or the probing of a Raman energy level. Middle panel: Laser spectrum used in the following experiments (black line) and spectral phase for spectral focusing (red line). Steepness: 5000 fs2, parabolas separated by 2250 cm−1). Right panel: calculated Raman excitation probability A(Ω). With FTL pulses (black line), the slowly decreasing function is the autocorrelation of the spectrum. With spectral focusing (red line) a selected range is excited, while destructive interferences eliminate other Raman shifts.

Fig. 3
Fig. 3

Shaped multimodal nonlinear microscopy applied to moss leaves. (a) Multimodal spectra obtained with FTL pulses. Note the small TPEF signal for λ < 600 nm, (b) Multimodal spectra after GDD = 200 fs2 has been applied. Red spectra were obtained in the cell wall, green spectra were obtained inside a chloroplast. Note that the spectra displayed in (b) were acquired with higher laser power in order to make the weak fluorescence signal clearly visible. (c) Multimodal image of spectrally integrated signal obtained with FTL pulses. (d) Multimodal image of spectrally integrated signal obtained with GDD = 200 fs2. The size of the imaged region is 100 μm x 100 μm.

Fig. 4
Fig. 4

400 µm x 400 µm images of human skin biopsies. (a) – (c) Normalized CARS images obtained with a FTL pulse, spectral focusing at 2850 cm−1 (resonant signal) and spectral focusing at 2650 cm−1 (off-resonant signal), respectively. Whereas the FTL pulse mainly leads to nonresonant signal, the contrast can be increased by applying a spectral focusing phase. Parabolas with a steepness of 7000 fs2 and a separation of 2850 cm−1, thus being on resonance with a CH-stretching band, lead to selective imaging of the lipid distribution. (f) The profile in the CARS image along the white line shown in (b) and (c) shows the difference in signal intensity and contrast between on resonant (Δν = 2850 cm−1, red line) and off-resonant (Δν = 2650 cm−1, black line) phase shaping. (d) SHG image obtained with a FTL pulse. (e) SHG image obtained with spectral focusing at 2850 cm−1. The signal in (e) was weaker than in (d), therefore both were normalized for comparison. (g) and (h) show the resulting multimodal RGB images containing CARS (red) and SHG (blue) of the FTL and on-resonance shaped pulses. A background of 15% has been subtracted and the signal was then rescaled with a factor of 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S T P E F ( ω f ) s ( 2 ) ( ω f ) g ( 2 ) ( ω ) | E ( ω ' ) E ( ω ω ' ) d ω ' | 2 d ω ,
S C A R S ( ω ) E p r o b e ( ω Ω ) χ ( 3 ) ( Ω ) A ( Ω ) d Ω
A ( Ω ) = E S t o k e s * ( ω ' Ω ) E p u m p ( ω ' ) d ω ' .

Metrics