Abstract

We present the first demonstration of fluorescence correlation spectroscopy (FCS) using superconducting nanowire single-photon detectors (SSPDs) which are free of afterpulses unlike the avalanche photodiode (APD). Multimode-fiber-coupled SSPDs with high system detection efficiency for visible wavelengths were developed and implemented in the FCS system. We performed FCS measurements for Rhodamine B and 6G as fluorescent samples, and found that autocorrelation functions obtained by the SSPDs showed a noise-free curve in the short correlation time region of sub microseconds where the afterpulse effect was dominant using the APD. The obtained results clearly indicate the advantage of SSPDs for the FCS system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast and high efficiency superconducting nanowire single-photon detector at 630  nm wavelength

Heqing Wang, Hao Li, Lixing You, Yong Wang, Lu Zhang, Xiaoyan Yang, Weijun Zhang, Zhen Wang, and Xiaoming Xie
Appl. Opt. 58(8) 1868-1872 (2019)

Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai
Opt. Express 22(18) 21167-21174 (2014)

Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector

Johtaro Yamamoto, Makoto Oura, Taro Yamashita, Shigehito Miki, Takashi Jin, Tokuko Haraguchi, Yasushi Hiraoka, Hirotaka Terai, and Masataka Kinjo
Opt. Express 23(25) 32633-32642 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  2. H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM,” Molecules 17(12), 4047–4132 (2012).
    [Crossref] [PubMed]
  3. E. Elson and R. Rigler, Fluorescence Correlation Spectroscopy: Theory and Applications, Springer Series in Chemical Physics 65, (Springer, 2001).
  4. S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
    [Crossref] [PubMed]
  5. Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
    [Crossref] [PubMed]
  6. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  7. E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
    [Crossref]
  8. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  9. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref] [PubMed]
  10. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  11. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express 19(11), 10387–10409 (2011).
    [Crossref] [PubMed]
  12. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
    [Crossref]
  13. D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
    [Crossref] [PubMed]
  14. B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. 95(19), 191110 (2009).
    [Crossref]
  15. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
    [Crossref]
  16. S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
    [Crossref] [PubMed]
  17. J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet-states in solution -a theoretical and experimental-study,” J. Phys. Chem. 99(36), 13368–13379 (1995).
    [Crossref]

2014 (3)

2013 (4)

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

2012 (1)

H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM,” Molecules 17(12), 4047–4132 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. 95(19), 191110 (2009).
[Crossref]

2007 (1)

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

2006 (1)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

1995 (1)

J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet-states in solution -a theoretical and experimental-study,” J. Phys. Chem. 99(36), 13368–13379 (1995).
[Crossref]

Allacher, A.

Ankerhold, R.

H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM,” Molecules 17(12), 4047–4132 (2012).
[Crossref] [PubMed]

Asai, T.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. 95(19), 191110 (2009).
[Crossref]

Berggren, K. K.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Dauler, E. A.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Dixon, A. R.

Domeki, T.

Drummen, G. P. C.

H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM,” Molecules 17(12), 4047–4132 (2012).
[Crossref] [PubMed]

Dynes, J. F.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Fujiwara, M.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Grein, M. E.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Hasegawa, T.

Honjo, T.

Ikuta, R.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Imoto, N.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Ishikawa-Ankerhold, H. C.

H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM,” Molecules 17(12), 4047–4132 (2012).
[Crossref] [PubMed]

Ishizuka, H.

Jeong, Y. C.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
[Crossref] [PubMed]

Kato, H.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kerman, A. J.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kim, Y. H.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
[Crossref] [PubMed]

Kim, Y. S.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
[Crossref] [PubMed]

Kinjo, M.

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Klaus, W.

Koashi, M.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Kobayashi, H.

Kusaka, Y.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Länger, T.

Legré, M.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, D.

Makarov, V.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
[Crossref] [PubMed]

Marsili, F.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Matsui, M.

Maurhart, O.

Mets, U.

J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet-states in solution -a theoretical and experimental-study,” J. Phys. Chem. 99(36), 13368–13379 (1995).
[Crossref]

Miki, S.

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Mikuni, S.

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Molnar, R. J.

Monat, L.

Nam, S. W.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. 95(19), 191110 (2009).
[Crossref]

Nambu, Y.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Page, J.-B.

Peev, M.

Poppe, A.

Ribordy, G.

Rigler, R.

J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet-states in solution -a theoretical and experimental-study,” J. Phys. Chem. 99(36), 13368–13379 (1995).
[Crossref]

Robyr, S.

Rosenberg, D.

Sakai, Y.

Sasaki, M.

Sauge, S.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
[Crossref] [PubMed]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sharpe, A. W.

Shaw, M. D.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shields, A. J.

Shimizu, K.

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. 95(19), 191110 (2009).
[Crossref]

Tajima, A.

Takahashi, S.

Takeoka, M.

Takesue, H.

Tamaki, K.

Tamura, M.

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Tanaka, A.

Terai, H.

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

Tokura, T.

Tokura, Y.

Tomita, A.

Trinkler, P.

Tsurumaru, T.

Uchikoga, S.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wakui, K.

Wang, Z.

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Widengren, J.

J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet-states in solution -a theoretical and experimental-study,” J. Phys. Chem. 99(36), 13368–13379 (1995).
[Crossref]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Yamamoto, T.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Yamashita, T.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Yang, J. K. W.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Yoshino, K.

You, L.

Yuan, Z. L.

Zeilinger, A.

Appl. Phys. Lett. (3)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. 95(19), 191110 (2009).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

FEBS Lett. (1)

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

J. Phys. Chem. (1)

J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet-states in solution -a theoretical and experimental-study,” J. Phys. Chem. 99(36), 13368–13379 (1995).
[Crossref]

Molecules (1)

H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM,” Molecules 17(12), 4047–4132 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Opt. Eng. (1)

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

Opt. Express (5)

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[Crossref] [PubMed]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express 19(11), 10387–10409 (2011).
[Crossref] [PubMed]

Phys. Rev. A (1)

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87(1), 010301 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y. H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82(9), 093110 (2011).
[Crossref] [PubMed]

Other (1)

E. Elson and R. Rigler, Fluorescence Correlation Spectroscopy: Theory and Applications, Springer Series in Chemical Physics 65, (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematics of the FCS system with VW-SSPD. (b) Intensity spectrum of excitation and fluorescence for Rhodamine B (solid line) and Rhodamine 6G (dashed line).
Fig. 2
Fig. 2 (a) Bias current dependences of the system detection efficiency (filled symbol) and dark count rate (open symbol) for the VW-SSPDs. (b) Normalized system detection efficiency vs. response count rate for the VW-SSPD-1 (black circle) and VW-SSPD-2 (red square).
Fig. 3
Fig. 3 (a) Autocorrelation functions vs. correlation time of Rhodamine B. Black and red lines indicate the data obtained by using APD and VW-SSPD-1, respectively. (b) Autocorrelation functions of Rhodamine 6G (black and red symbols) and fitted curves (green lines) by using Eq. (2). Inset: overall view around 1 μs of the autocorrelation function for Rhodamine 6G.

Tables (1)

Tables Icon

Table 1 Fitted results of the FCS measurements of 0.1-μM Rhodamine 6G

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = I ( t ) I ( t + τ ) I ( t ) 2 ,
G ( τ ) = [ 1 + 1 N ( 1 + τ τ D ) 1 ( 1 + τ s 2 τ D ) 1 / 2 ] [ 1 + T 1 T exp ( τ τ T ) ] ,

Metrics