Abstract

We report the observation of cascaded Raman lasing in high-Q As2S3 microspheres. Cascaded stimulated Raman scattering emission is obtained up to the 5th order for a pump wavelength of 1557 nm and up to the 3rd order for a pump wavelength of 1880 nm. High-Q As2S3 microspheres are used in a self-frequency locking laser setup without an external laser source. Threshold curves measurements are presented and follow the expected coupled mode theory behavior with a sub-mW threshold pump power.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Raman lasing in As2S3 high-Q whispering gallery mode resonators

Francis Vanier, Martin Rochette, Nicolas Godbout, and Yves-Alain Peter
Opt. Lett. 38(23) 4966-4969 (2013)

Mid-infrared supercontinuum generation based on cascaded Raman scattering in a few-mode As2S3 fiber pumped by a thulium-doped fiber laser

Jinmei Yao, Bin Zhang, Ke Yin, Linyong Yang, Jing Hou, and Qisheng Lu
Opt. Express 24(13) 14717-14724 (2016)

Realization of an O-waveband laser based on cascaded stimulated Raman scattering of microspheres

Shijian Zhuang, Yantang Huang, Longxiang Peng, Jingjing Qin, Yafan Duan, and Tingdi Liao
Appl. Opt. 56(27) 7572-7576 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
    [Crossref]
  2. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  3. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
    [Crossref]
  4. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express 14(17), 7924–7930 (2006).
    [Crossref] [PubMed]
  5. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
    [Crossref] [PubMed]
  6. N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
    [Crossref]
  7. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
    [Crossref] [PubMed]
  8. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
    [Crossref] [PubMed]
  9. R. Ahmad and M. Rochette, “Chalcogenide microwire based Raman laser,” Appl. Phys. Lett. 101, 101110 (2012).
    [Crossref]
  10. R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
    [Crossref] [PubMed]
  11. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref] [PubMed]
  12. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref] [PubMed]
  13. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
    [Crossref]
  14. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [Crossref] [PubMed]
  15. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
    [Crossref] [PubMed]
  16. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
    [Crossref]
  17. J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
    [Crossref]
  18. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
    [Crossref] [PubMed]
  19. M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, and C. K. Madsen, “Vertically integrated As2S3 ring resonator on LiNbO3,” Opt. Lett. 34(11), 1735–1737 (2009).
    [Crossref] [PubMed]
  20. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
    [Crossref]
  21. J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
    [Crossref] [PubMed]
  22. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  23. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36(24), 4761–4763 (2011).
    [Crossref] [PubMed]
  24. G. R. Elliott, D. W. Hewak, G. Senthil Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
    [Crossref] [PubMed]
  25. C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
    [Crossref]
  26. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
    [Crossref] [PubMed]
  27. G. R. Elliott, G. Senthil Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
    [Crossref] [PubMed]
  28. P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
    [Crossref]
  29. P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
    [Crossref]
  30. F. Vanier, M. Rochette, N. Godbout, and Y.-A. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38(23), 4966–4969 (2013).
    [Crossref] [PubMed]
  31. O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
    [Crossref]
  32. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32(3), 244–246 (2007).
    [Crossref] [PubMed]
  33. A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
    [Crossref]

2014 (3)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (3)

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

R. Ahmad and M. Rochette, “Chalcogenide microwire based Raman laser,” Appl. Phys. Lett. 101, 101110 (2012).
[Crossref]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

G. R. Elliott, G. Senthil Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (3)

2007 (3)

2006 (2)

2004 (2)

2003 (1)

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[Crossref]

2001 (1)

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

1995 (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

Adams, D. B.

Agarwal, A.

Aggarwal, I. D.

Agha, I. H.

Ahmad, R.

R. Ahmad and M. Rochette, “Chalcogenide microwire based Raman laser,” Appl. Phys. Lett. 101, 101110 (2012).
[Crossref]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref] [PubMed]

Aitken, B. G.

Aktas, O.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[Crossref]

Armani, D. K.

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

Bayindir, M.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Bernier, M.

Bian, S. N.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

Bo, L.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Bourdon, P.

Brambilla, G.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

Brilland, L.

Broaddus, D. H.

Buczynski, R.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Canat, G.

Canning, J.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Carlie, N.

Carmon, T.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

Caron, N.

Cook, K.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Coulombier, Q.

Currie, S. C.

Danto, S.

Dekker, S.

Ding, M.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

Druon, F.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Ducros, N.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Duhant, M.

Eggleton, B. J.

El-Amraoui, M.

Elliott, G. R.

Farrell, G.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

Feng, N.-N.

Février, S.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Fortin, V.

Foster, M. A.

Freeman, M. J.

Gaeta, A. L.

Galstian, T.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Georges, P.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Godbout, N.

Gong, T.

Grillet, C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

Grudinin, I. S.

Hamel, V.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Hanna, M.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Hewak, D.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Hewak, D. W.

Hodelin, J.

Hu, J.

Humbert, G.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Huseyinoglu, E.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Islam, M. N.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

Jackson, S. D.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[Crossref]

Jarrahi, M.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

Kabakova, I.

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

Kanik, M.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Kieu, K.

Kimerling, L.

Kimerling, L. C.

Kippenberg, T. J.

Kozacik, S.

Kuditcher, A.

Kulkarni, O. P.

Kumar, M.

Labruyère, A.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Lee, D. J.

Lee, T.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Lenz, G.

Li, L.

Lin, H.

Lin, P. T.

Lipson, M.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Luan, F.

Madsen, C. K.

Magi, E.

Magi, E. C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

Maleki, L.

Mansuripur, M.

McCarthy, J. E.

Messaddeq, Y.

Min, B.

Monro, T. M.

Moore, J.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

Morin, F.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Murakowski, M.

Musgraves, J. D.

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

Nguyen, T. N.

Nolan, D. A.

Ozgur, E.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Peter, Y.-A.

Petit, L.

Powley, M. L.

Prather, D.

Pysz, D.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Renard, W.

Renversez, G.

Richardson, K.

Rivero, C.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Robinson, J. T.

Rochette, M.

Sanghera, J.

Sanghera, J. S.

Schulte, A.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Semenova, Y.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

Senthil Murugan, G.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

G. R. Elliott, G. Senthil Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
[Crossref] [PubMed]

G. R. Elliott, D. W. Hewak, G. Senthil Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
[Crossref] [PubMed]

Shaw, L. B.

Singh, V.

Slusher, R. E.

Smektala, F.

Snider, W. T.

Solmaz, M. E.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[Crossref]

Stepien, R.

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Tan, W. C.

Terry, F. L.

Tobail, O.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Tomes, M.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

Toupin, P.

Troles, J.

Tuniz, A.

Turcotte, K.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Vahala, K. J.

Vallée, R.

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref] [PubMed]

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Vanier, F.

Villeneuve, A.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Wang, P.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

White, R. T.

Wilkinson, J. S.

Wu, Q.

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

Xia, C.

Xiong, C.

Zervas, M. N.

Zou, Y.

Adv. Optical Mater. (1)

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Optical Mater. 2(7), 618–625 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

P. Wang, M. Ding, T. Lee, G. Senthil Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[Crossref]

R. Ahmad and M. Rochette, “Chalcogenide microwire based Raman laser,” Appl. Phys. Lett. 101, 101110 (2012).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Wang, G. Senthil Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface,” IEEE Photonics Technol. Lett. 24 (13), 1103–1105 (2012).
[Crossref]

J. App. Phys. (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. App. Phys. 77(11), 5518–5523 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Nature (London) (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002).
[Crossref]

Opt. Commun. (1)

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Galstian, and R. Vallée, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1–3), 125–128 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (15)

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
[Crossref] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
[Crossref] [PubMed]

F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36(24), 4761–4763 (2011).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref] [PubMed]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

F. Vanier, M. Rochette, N. Godbout, and Y.-A. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38(23), 4966–4969 (2013).
[Crossref] [PubMed]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, and C. K. Madsen, “Vertically integrated As2S3 ring resonator on LiNbO3,” Opt. Lett. 34(11), 1735–1737 (2009).
[Crossref] [PubMed]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref] [PubMed]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref] [PubMed]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
[Crossref]

K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32(3), 244–246 (2007).
[Crossref] [PubMed]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

N. Ducros, F. Morin, K. Cook, A. Labruyère, S. Février, G. Humbert, F. Druon, M. Hanna, P. Georges, J. Canning, R. Buczynski, D. Pysz, and R. Stepien, “Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres,” Proc. SPIE 7714, 77140B (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Self-frequency locking laser setup - The gain signal from a Er-doped fiber amplifer is filtered using a 0.2 nm bandwidth tunable band-pass filter. An As2S3 microsphere acts as a narrow-band mirror and sends back a single line emission in the fiber loop. The transmitted pump signal and the forward Raman signal is measured by the OSA. A powermeter measures the injected pump power in the tapered fiber.
Fig. 2
Fig. 2 Glass tube packaging - (a) Glass half-rods are installed in the lower half of a glass tube. (b) The tapered fiber is attached to the glass half-rods. While the microsphere is in a optimal coupling condition, its fiber tip is glued to the side of the half-tube. (c) The upper half of the glass tube is placed on top.
Fig. 3
Fig. 3 (a) Image of a typical packaged As2S3 microsphere. (b) Transmission spectrum of a high-Q resonance from a packaged As2S3 microsphere. The loaded Q-factor QL = 1 × 107.
Fig. 4
Fig. 4 Spectrum of a cascaded SRS emission of an As2S3 microsphere including 5 Raman orders generated from a pump wavelength of 1557 nm. The injected pump power in the tapered fiber is 6.3 mW. Each Raman order bands are centered on wavelengths of 1646 nm, 1747 nm, 1861 nm, 1991 nm and 2140 nm respectively. The inset shows a typical Raman spectroscopy measurement made on an As2S3 sphere surface.
Fig. 5
Fig. 5 Forward Raman signal power measurements for the (a) 1 st (b) 2 nd and (c) 3 rd Raman order. In the inset of (a), SRS threshold pump power is 370 μW. In (b), the threshold pump power of the second order Raman emission is 430 μW. The first order Raman signal saturates when the second order SRS emission power increases between 450 μW and 600 μW of pump power. In (c), the threshold power of the third Raman order is 607 μW. The first order Raman signal increases again when the third order Raman signal is getting stronger.
Fig. 6
Fig. 6 Self-frequency locking laser setup at 1880 nm - The gain of a Tm-doped fiber is sent to the microsphere which acts as a narrow band mirror. The reflected signal is amplified in the fiber loop. The spectra are measured using an OSA.
Fig. 7
Fig. 7 Spectrum of a cascaded SRS emission with 3 Raman orders with a pump wavelength band centered on 1880 nm. Multimode Raman emission band positions are 2015 nm, 2170 nm and 2350 nm respectively.

Metrics