Abstract

We have investigated second harmonic generation (SHG) from Ag-coated LiNbO3 (LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by 3 × 105 in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to the SHG signal, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter interaction at nanoscale.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

Laura Sánchez-García, Christos Tserkezis, Mariola O Ramírez, Pablo Molina, Joan J. Carvajal, Magdalena Aguiló, Francesc Díaz, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 24(8) 8491-8500 (2016)

Plasmonic enhancement of second harmonic generation on metal coated nanoparticles

Sarina Wunderlich and Ulf Peschel
Opt. Express 21(16) 18611-18623 (2013)

Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer

Fajun Xiao, Shiyin Cao, Wuyun Shang, Weiren Zhu, Lei Han, Ting Mei, Malin Premaratne, and Jianlin Zhao
Opt. Lett. 44(15) 3813-3816 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).
  2. J. F. Li and Z. Y. Li, “Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures: A brief review,” Chin. Phys. B23, (2014).
  3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  4. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
    [Crossref] [PubMed]
  5. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  6. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
    [Crossref] [PubMed]
  7. C. K. Chen, A. R. B. Decastro, and Y. R. Shen, “Surface-Enchanced 2nd-Harmonic Generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
    [Crossref]
  8. B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
    [PubMed]
  9. H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
    [Crossref] [PubMed]
  10. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
    [Crossref] [PubMed]
  11. J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
    [Crossref]
  12. M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).
  13. T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  14. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  15. Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
    [Crossref] [PubMed]
  16. J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
    [Crossref]
  17. S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film,” Adv. Opt. Mater. 1(3), 227–231 (2013).
    [Crossref]
  18. S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
    [Crossref] [PubMed]
  19. C. Shi, S. Soltani, and A. M. Armani, “Gold Nanorod Plasmonic Upconversion Microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
    [Crossref] [PubMed]
  20. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [Crossref]
  21. S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
    [Crossref]
  22. X. M. Hua and J. I. Gersten, “Theory of 2nd-Harmonic Generation by Small Metal Spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
    [Crossref]
  23. Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70(24), 245434 (2004).
    [Crossref]
  24. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
    [Crossref]
  25. B. T. Draine and P. J. Flatau, “Discrete-Dipole Approximation for Scattering Calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  26. F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
    [Crossref]
  27. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Strong localization of near-field second-harmonic generation for nonlinear mesoscopic surface structures,” Phys. Rev. B 59(19), 12622–12626 (1999).
    [Crossref]
  28. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  29. M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
    [Crossref]
  30. B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
    [Crossref]
  31. B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
    [Crossref] [PubMed]
  32. B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
    [Crossref]
  33. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
    [Crossref] [PubMed]
  34. Z. Y. Li and J. F. Li, “Recent progress in engineering and application of surface plasmon resonance in metal nanostructures,” Chin. Sci. Bull.(Chinese Ver.) 56(32), 2631 (2011).
    [Crossref]
  35. J. F. Li, H. L. Guo, and Z. Y. Li, “Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures,” Photon. Res. 1(1), 28 (2013).
    [Crossref]
  36. Z. Y. Li, “Nanophotonics in China: Overviews and highlights,” Front. of Phys. 7(6), 601–631 (2012).
    [Crossref]

2014 (1)

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

2013 (8)

J. F. Li, H. L. Guo, and Z. Y. Li, “Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures,” Photon. Res. 1(1), 28 (2013).
[Crossref]

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
[Crossref]

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film,” Adv. Opt. Mater. 1(3), 227–231 (2013).
[Crossref]

C. Shi, S. Soltani, and A. M. Armani, “Gold Nanorod Plasmonic Upconversion Microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

2012 (4)

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
[Crossref]

Z. Y. Li, “Nanophotonics in China: Overviews and highlights,” Front. of Phys. 7(6), 601–631 (2012).
[Crossref]

2011 (2)

Z. Y. Li and J. F. Li, “Recent progress in engineering and application of surface plasmon resonance in metal nanostructures,” Chin. Sci. Bull.(Chinese Ver.) 56(32), 2631 (2011).
[Crossref]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

2009 (5)

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref] [PubMed]

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

2008 (1)

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

2007 (1)

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

2006 (1)

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

2004 (1)

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70(24), 245434 (2004).
[Crossref]

2003 (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

1999 (1)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Strong localization of near-field second-harmonic generation for nonlinear mesoscopic surface structures,” Phys. Rev. B 59(19), 12622–12626 (1999).
[Crossref]

1994 (1)

1986 (1)

X. M. Hua and J. I. Gersten, “Theory of 2nd-Harmonic Generation by Small Metal Spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[Crossref]

1981 (1)

C. K. Chen, A. R. B. Decastro, and Y. R. Shen, “Surface-Enchanced 2nd-Harmonic Generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[Crossref]

Agarwal, R.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

Armani, A. M.

C. Shi, S. Soltani, and A. M. Armani, “Gold Nanorod Plasmonic Upconversion Microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Aspetti, C. O.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Benichou, E.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Brevet, P. F.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Butet, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Chen, B. Q.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
[Crossref]

Chen, C. K.

C. K. Chen, A. R. B. Decastro, and Y. R. Shen, “Surface-Enchanced 2nd-Harmonic Generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[Crossref]

Chen, H. J.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Chen, Y. C.

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Cui, Y. X.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

de Beer, A. G. F.

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

Decastro, A. R. B.

C. K. Chen, A. R. B. Decastro, and Y. R. Shen, “Surface-Enchanced 2nd-Harmonic Generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[Crossref]

Draine, B. T.

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Flatau, P. J.

Gan, L.

Gardner, D.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Gersten, J. I.

X. M. Hua and J. I. Gersten, “Theory of 2nd-Harmonic Generation by Small Metal Spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[Crossref]

Ginger, D.

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Grange, R.

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref] [PubMed]

Gu, B. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Strong localization of near-field second-harmonic generation for nonlinear mesoscopic surface structures,” Phys. Rev. B 59(19), 12622–12626 (1999).
[Crossref]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guo, H. L.

J. F. Li, H. L. Guo, and Z. Y. Li, “Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures,” Photon. Res. 1(1), 28 (2013).
[Crossref]

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Harutyunyan, H.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
[Crossref] [PubMed]

He, S. L.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Hsieh, C. L.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref] [PubMed]

Hua, X. M.

X. M. Hua and J. I. Gersten, “Theory of 2nd-Harmonic Generation by Small Metal Spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[Crossref]

Huang, L.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Hubner, W.

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70(24), 245434 (2004).
[Crossref]

Jonin, C.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Li, J. F.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

J. F. Li, H. L. Guo, and Z. Y. Li, “Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures,” Photon. Res. 1(1), 28 (2013).
[Crossref]

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film,” Adv. Opt. Mater. 1(3), 227–231 (2013).
[Crossref]

B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
[Crossref]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

Z. Y. Li and J. F. Li, “Recent progress in engineering and application of surface plasmon resonance in metal nanostructures,” Chin. Sci. Bull.(Chinese Ver.) 56(32), 2631 (2011).
[Crossref]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

J. F. Li and Z. Y. Li, “Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures: A brief review,” Chin. Phys. B23, (2014).

Li, Q.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Li, X.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Li, Z. Y.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
[Crossref]

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film,” Adv. Opt. Mater. 1(3), 227–231 (2013).
[Crossref]

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

J. F. Li, H. L. Guo, and Z. Y. Li, “Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures,” Photon. Res. 1(1), 28 (2013).
[Crossref]

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

Z. Y. Li, “Nanophotonics in China: Overviews and highlights,” Front. of Phys. 7(6), 601–631 (2012).
[Crossref]

B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
[Crossref]

Z. Y. Li and J. F. Li, “Recent progress in engineering and application of surface plasmon resonance in metal nanostructures,” Chin. Sci. Bull.(Chinese Ver.) 56(32), 2631 (2011).
[Crossref]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Strong localization of near-field second-harmonic generation for nonlinear mesoscopic surface structures,” Phys. Rev. B 59(19), 12622–12626 (1999).
[Crossref]

J. F. Li and Z. Y. Li, “Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures: A brief review,” Chin. Phys. B23, (2014).

Liu, Q. K.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Liu, R. J.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

Liu, S. Y.

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film,” Adv. Opt. Mater. 1(3), 227–231 (2013).
[Crossref]

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Liu, W.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

Liu, Y.

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Lu, X. H.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

Ma, B. Q.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

McLellan, J. M.

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Meng, Z. M.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Novotny, L.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Pavlyukh, Y.

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70(24), 245434 (2004).
[Crossref]

Pertsch, T.

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Psaltis, D.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref] [PubMed]

Quidant, R.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
[Crossref] [PubMed]

Ren, M. L.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
[Crossref]

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
[Crossref]

Richter, J.

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

Roke, S.

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

Russier-Antoine, I.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Shen, Y. R.

C. K. Chen, A. R. B. Decastro, and Y. R. Shen, “Surface-Enchanced 2nd-Harmonic Generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[Crossref]

Sheng, Y.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Shi, C.

C. Shi, S. Soltani, and A. M. Armani, “Gold Nanorod Plasmonic Upconversion Microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Shi, Z.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Smalyukh, I. I.

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Soltani, S.

C. Shi, S. Soltani, and A. M. Armani, “Gold Nanorod Plasmonic Upconversion Microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Steinbruck, A.

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Sun, L.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

Sun, L. D.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Tunnermann, A.

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Volpe, G.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
[Crossref] [PubMed]

Wang, B. L.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
[Crossref]

Wang, C.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Wang, J. F.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, R.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

Wiley, B. J.

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Xia, Y. N.

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Xiong, Y. J.

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

Xu, H. X.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Yan, C. H.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, G. Z.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Strong localization of near-field second-harmonic generation for nonlinear mesoscopic surface structures,” Phys. Rev. B 59(19), 12622–12626 (1999).
[Crossref]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, C.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Zhao, J. M.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Zhong, X. L.

M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
[Crossref]

Zhou, F.

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36(7), 1296–1298 (2011).
[Crossref] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film,” Adv. Opt. Mater. 1(3), 227–231 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Chin. Phys. Lett. (1)

M. L. Ren, X. L. Zhong, B. Q. Chen, and Z. Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chin. Phys. Lett. 30(9), 097301 (2013).
[Crossref]

Chin. Sci. Bull.(Chinese Ver.) (1)

Z. Y. Li and J. F. Li, “Recent progress in engineering and application of surface plasmon resonance in metal nanostructures,” Chin. Sci. Bull.(Chinese Ver.) 56(32), 2631 (2011).
[Crossref]

Front. of Phys. (1)

Z. Y. Li, “Nanophotonics in China: Overviews and highlights,” Front. of Phys. 7(6), 601–631 (2012).
[Crossref]

J. Appl. Phys. (1)

B. L. Wang, M. L. Ren, J. F. Li, and Z. Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112(8), 083102 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (2)

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Light Sci. Appl. (1)

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Nano Lett. (5)

B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7(4), 1032–1036 (2007).
[Crossref] [PubMed]

C. Shi, S. Soltani, and A. M. Armani, “Gold Nanorod Plasmonic Upconversion Microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Q. K. Liu, Y. X. Cui, D. Gardner, X. Li, S. L. He, and I. I. Smalyukh, “Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium,” Nano Lett. 10(5), 1717–1721 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2013).

Nat. Photonics (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. B (4)

X. M. Hua and J. I. Gersten, “Theory of 2nd-Harmonic Generation by Small Metal Spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[Crossref]

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70(24), 245434 (2004).
[Crossref]

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Strong localization of near-field second-harmonic generation for nonlinear mesoscopic surface structures,” Phys. Rev. B 59(19), 12622–12626 (1999).
[Crossref]

Phys. Rev. Lett. (5)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

C. K. Chen, A. R. B. Decastro, and Y. R. Shen, “Surface-Enchanced 2nd-Harmonic Generation,” Phys. Rev. Lett. 46(2), 145–148 (1981).
[Crossref]

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas,” Phys. Rev. Lett. 108(21), 217403 (2012).
[Crossref] [PubMed]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Plasmonics (1)

J. Richter, A. Steinbruck, T. Pertsch, A. Tunnermann, and R. Grange, “Plasmonic Core-Shell Nanowires for Enhanced Second-Harmonic Generation,” Plasmonics 8(1), 115–120 (2013).
[Crossref]

Sci Rep (1)

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. M. Zhao, and Z. Y. Li, “Origin of Shape Resonance in Second-Harmonic Generation from Metallic Nanohole Arrays,” Sci Rep 3, 2358 (2013).
[PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).

J. F. Li and Z. Y. Li, “Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures: A brief review,” Chin. Phys. B23, (2014).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram of a Ag-coated nanocuboid. The nonlinear core, 16 × 72 × 16 nm3, is lithium niobate (LiNbO3, LN) which is coated by a 5 nm thick Ag shell. The fundamental wave (FW, ω) propagates along the x-direction, and excites second harmonic generation (SHG, 2ω) signal in all directions. (b) Calculated SHG signal in three different cases, Ag-coated LiNbO3 nanocuboid (Ag-LN, yy-z utilizing d32), Ag-LN (yy-y, d22), and bare LN (yy-y, d22) for comparison. Here yy-z representss that the SHG signal with z-component (E2 z ) is excited by FW with E1 y . Assume d32 = d22 = d0. P0 is the unit power.
Fig. 2
Fig. 2 Extinction cross-section (Cext) of Ag-coated and bare LN nanocuboid. (a) Ag-LN under the y-polarized excitation. Insets: diagram of the excitation polarization and enlarged figure of Cext wihtin the wavelength range of 400-500 nm. (b) Ag-LN under the z-polarized excitation. Similar to Panel (a), one of insets shows the enlarged figure of Cext within 800-1000 nm. Bare LN under the y-polarized (c) and z-polarized (d) excitation.
Fig. 3
Fig. 3 Field distribution (yz-plane) of Ag-coated and bare LN nanocuboid at the wavelengths of 900 nm and 450 nm. (a) Ag-LN under the y-polarized excitation and at 900 nm (resonance). (b) Ag-LN under the z-polarized excitation and at 450 nm (resonance). (c) Bare LN under the y-polarized excitation and at 900 nm. (d) Bare LN under the z-polarized excitation and at 450 nm. Here only the LN core (of Ag-LN) is plotted.
Fig. 4
Fig. 4 (a) Excitation polarization dependence of the z-polarized SHG signals. Inset: polarization angle of FW (yz-plane), θ, is set with respect to the y-axis. (b) Calculated SHG signal in the cases of xx-z (utilizing d31) and xx-y (d21) when FW is polarized in the xz-plane (propagating along the y-axis). Assume d31 = d21 = d0.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

× × E 1 k 1 2 E 1 = k 1 2 P 1 ,
E 1 , j = E 10 , j k j N Α j k P 1 , k ,
A j k P 1 , k = exp ( i k 1 r j k ) r j k 3 { k 1 2 r j k × ( r j k × P 1 , k ) + 1 i k 1 r j k r j k 2 [ r j k 2 P 1 , k 3 r j k ( r j k P 1 , k ) ] } ,
E 10 , j = k = 1 N Α j k P 1 , k .
C s c a = k 1 4 | E 10 | 2 d Ω | k = 1 N [ P 1 , k n k ( n k P 1 , k ) ] exp ( i k 1 n k r k ) | 2 ,
C e x t = 4 π k 1 | E 10 | 2 k = 1 N Im ( E 10 , k * P 1 , k ) .
× × E 2 k 2 2 E 2 = k 2 2 P 2 + k 2 2 P ( 2 ) ,
E 2 , j = E 20 , j k j N B j k P 2 , k ,
B j k P 2 , k = exp ( i k 2 r j k ) r j k 3 { k 2 2 r j k × ( r j k × P 2 , k ) + 1 i k 2 r j k r j k 2 [ r j k 2 P 2 , k 3 r j k ( r j k P 2 , k ) ] } ,
E 20 , j = P j ( 2 ) / α 2 , j k j N B j k P k ( 2 ) ,
P j ( 2 ) = d 3 4 π ε b ( 3 ε b ε m + 2 ε b ) 2 χ ( 2 ) : E 1 , j E 1 , j ,
W s c a k 2 4 d Ω | k = 1 N [ P k n k ( n k P k ) ] exp ( i k 2 n k r k ) | 2 .
( P x ( 2 ) P y ( 2 ) P z ( 2 ) ) = ( d 11 d 12 d 13 d 14 d 15 d 16 d 21 d 22 d 23 d 24 d 25 d 26 d 31 d 32 d 33 d 34 d 35 d 36 ) ( E 1 x 2 E 1 y 2 E 1 z 2 2 E 1 y E 1 z 2 E 1 z E 1 x 2 E 1 x E 1 y ) ,

Metrics