Abstract

We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stability of a frequency-comb-based transfer-lock using a passive Fabry–Perot resonator

Sambit B. Pal, Mark M. Lam, and K. Dieckmann
Opt. Lett. 41(23) 5527-5530 (2016)

Narrow-linewidth light source for a coherent Raman transfer of ultracold molecules

K. Aikawa, J. Kobayashi, K. Oasa, T. Kishimoto, M. Ueda, and S. Inouye
Opt. Express 19(15) 14479-14486 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Di Rosa, “Laser-cooling molecules,” Eur. Phys. J. D 31(2), 395–402 (2004).
    [Crossref]
  2. B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
    [Crossref] [PubMed]
  3. E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
    [Crossref] [PubMed]
  4. M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
    [Crossref] [PubMed]
  5. V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
    [Crossref]
  6. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
    [Crossref] [PubMed]
  7. J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
    [Crossref]
  8. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
    [Crossref]
  9. R. Krems, B. Friedrich, and W. C. Stwalley, Cold Molecules: Theory, Experiment, Applications (CRC, 2009).
  10. D. S. Jin and J. Ye, eds., Chemical Reviews, Special Issue on Ultracold Molecules 112, 4801–5072 (2012).
  11. E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
    [Crossref] [PubMed]
  12. J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
    [Crossref] [PubMed]
  13. F. J. Duarte, L. W. Hillman, P. F. Liao, and P. Kelley, Dye Laser Principles with Applications (Academic, 1990), Chap. 5.
  14. J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral resolution: design and performance,” Appl. Opt. 21(9), 1686–1694 (1982).
    [Crossref] [PubMed]
  15. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  16. J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
    [Crossref]
  17. M. Zhu and J. L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10(5), 802–816 (1993).
    [Crossref]
  18. B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye lasers,” Rev. Sci. Instrum. 62(6), 1656–1657 (1991).
    [Crossref]
  19. E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
    [Crossref]
  20. J. Biesheuvel, D. W. E. Noom, E. J. Salumbides, K. T. Sheridan, W. Ubachs, and J. C. J. Koelemeij, “Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset,” Opt. Express 21(12), 14008–14016 (2013).
    [Crossref] [PubMed]
  21. C. W. Oates, K. R. Vogel, and J. L. Hall, “High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy,” Phys. Rev. Lett. 76(16), 2866–2869 (1996).
    [Crossref] [PubMed]
  22. V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
    [Crossref]
  23. T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [Crossref]
  24. J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9(11), 502–504 (1984).
    [Crossref] [PubMed]
  25. MgF molecule has a main cooling transition on X2S+→A2P1/2 at 359.3nm, highly diagonal Franck-Condon factors limit the vibrational branching of A2P1/2, only two additional lasers at 368.6nm and 368.1nm to repump the v” = 1, 2 levels are needed to limit the vibrational branching loss to <10−6. These lasers are from dye laser frequency doubling in a doubling cavity.
  26. The linewidth of laser frequency is derived from the relative frequency deviation (RMS deviation) from the current lock frequency of the reference cell calculated with the help of the PDH error function for the resonator with a free spectral range and a finesse, which is analyzed by the digital signal processor software of Matisse dye laser.

2014 (2)

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

2013 (2)

2010 (1)

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[Crossref] [PubMed]

2009 (2)

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
[Crossref]

E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
[Crossref] [PubMed]

2008 (1)

B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
[Crossref] [PubMed]

2004 (2)

M. D. Di Rosa, “Laser-cooling molecules,” Eur. Phys. J. D 31(2), 395–402 (2004).
[Crossref]

J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
[Crossref]

2001 (1)

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

1996 (1)

C. W. Oates, K. R. Vogel, and J. L. Hall, “High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy,” Phys. Rev. Lett. 76(16), 2866–2869 (1996).
[Crossref] [PubMed]

1994 (1)

E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
[Crossref]

1993 (1)

1991 (1)

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye lasers,” Rev. Sci. Instrum. 62(6), 1656–1657 (1991).
[Crossref]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

1984 (2)

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9(11), 502–504 (1984).
[Crossref] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1982 (1)

1980 (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Allegrini, M.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Arimondo, E.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Ashworth, S. H.

E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
[Crossref]

Barry, J. F.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[Crossref] [PubMed]

E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
[Crossref] [PubMed]

Biesheuvel, J.

Binder, C.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Carr, L. D.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
[Crossref]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Collopy, A. L.

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

Couillaud, B.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Cournol, A.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

DeMille, D.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[Crossref] [PubMed]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
[Crossref]

E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
[Crossref] [PubMed]

Di Rosa, M. D.

M. D. Di Rosa, “Laser-cooling molecules,” Eur. Phys. J. D 31(2), 395–402 (2004).
[Crossref]

Doyle, J.

J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Dunning, F. B.

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye lasers,” Rev. Sci. Instrum. 62(6), 1656–1657 (1991).
[Crossref]

Farrell, J. T.

E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Friedrich, B.

J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
[Crossref]

Fuso, F.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Glenn, D. R.

E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
[Crossref] [PubMed]

Hall, J. L.

C. W. Oates, K. R. Vogel, and J. L. Hall, “High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy,” Phys. Rev. Lett. 76(16), 2866–2869 (1996).
[Crossref] [PubMed]

M. Zhu and J. L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10(5), 802–816 (1993).
[Crossref]

J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9(11), 502–504 (1984).
[Crossref] [PubMed]

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral resolution: design and performance,” Appl. Opt. 21(9), 1686–1694 (1982).
[Crossref] [PubMed]

Hansch, T. W.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Hänsch, T. W.

Helmcke, J.

Hils, D.

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

Hinds, E. A.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Hollberg, L.

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

Hough, J.

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Huber, W.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Hudson, J. J.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Hummon, M. T.

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

Koelemeij, J. C. J.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Krems, R. V.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
[Crossref]

J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
[Crossref]

Lee, S. A.

Lindsay, B. G.

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye lasers,” Rev. Sci. Instrum. 62(6), 1656–1657 (1991).
[Crossref]

Ma, L. S.

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

Masnou-Seeuws, F.

J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
[Crossref]

Matsushima, A.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

McCarron, D. J.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Nesbitt, D. J.

E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
[Crossref]

Noom, D. W. E.

Norrgard, E. B.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

Oates, C. W.

C. W. Oates, K. R. Vogel, and J. L. Hall, “High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy,” Phys. Rev. Lett. 76(16), 2866–2869 (1996).
[Crossref] [PubMed]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Rayman, M. D.

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

Riedle, E.

E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
[Crossref]

Salumbides, E. J.

Sauer, B. E.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Sawyer, B. C.

B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
[Crossref] [PubMed]

Sheridan, K. T.

Shuman, E. S.

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[Crossref] [PubMed]

E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
[Crossref] [PubMed]

Smith, K. A.

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye lasers,” Rev. Sci. Instrum. 62(6), 1656–1657 (1991).
[Crossref]

Steinecker, M. H.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

Stuhl, B. K.

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
[Crossref] [PubMed]

Tarbutt, M. R.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Ubachs, W.

Vogel, K. R.

C. W. Oates, K. R. Vogel, and J. L. Hall, “High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy,” Phys. Rev. Lett. 76(16), 2866–2869 (1996).
[Crossref] [PubMed]

Wall, T. E.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Wang, D.

B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
[Crossref] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Windholz, L.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Wippel, V.

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

Xia, Y.

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

Ye, J.

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
[Crossref]

B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
[Crossref] [PubMed]

Yeo, M.

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

Zhelyazkova, V.

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Zhu, M.

Appl. Opt. (1)

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

J. Hough, D. Hils, M. D. Rayman, L. S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33(3), 179–185 (1984).
[Crossref]

Eur. Phys. J. D (3)

M. D. Di Rosa, “Laser-cooling molecules,” Eur. Phys. J. D 31(2), 395–402 (2004).
[Crossref]

J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, “Ultracold polar molecules: formation and collisions,” Eur. Phys. J. D 31(2), 149–445 (2004).
[Crossref]

V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and E. Arimondo, “Photoionization cross-sections of the first excited states of sodium and lithium in a magneto-optical trap,” Eur. Phys. J. D 17(3), 285–291 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (2)

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512(7514), 286–289 (2014).
[Crossref] [PubMed]

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11(5), 055049 (2009).
[Crossref]

Opt. Commun. (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” Phys. Rev. A 89(5), 053416 (2014).
[Crossref]

Phys. Rev. Lett. (5)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, “2D Magneto-optical trapping of diatomic molecules,” Phys. Rev. Lett. 110(14), 143001 (2013).
[Crossref] [PubMed]

B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, “Magneto-optical trap for polar molecules,” Phys. Rev. Lett. 101(24), 243002 (2008).
[Crossref] [PubMed]

C. W. Oates, K. R. Vogel, and J. L. Hall, “High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy,” Phys. Rev. Lett. 76(16), 2866–2869 (1996).
[Crossref] [PubMed]

E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, “Radiative force from optical cycling on a diatomic molecule,” Phys. Rev. Lett. 103(22), 223001 (2009).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye lasers,” Rev. Sci. Instrum. 62(6), 1656–1657 (1991).
[Crossref]

E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65(1), 42–48 (1994).
[Crossref]

Other (5)

F. J. Duarte, L. W. Hillman, P. F. Liao, and P. Kelley, Dye Laser Principles with Applications (Academic, 1990), Chap. 5.

R. Krems, B. Friedrich, and W. C. Stwalley, Cold Molecules: Theory, Experiment, Applications (CRC, 2009).

D. S. Jin and J. Ye, eds., Chemical Reviews, Special Issue on Ultracold Molecules 112, 4801–5072 (2012).

MgF molecule has a main cooling transition on X2S+→A2P1/2 at 359.3nm, highly diagonal Franck-Condon factors limit the vibrational branching of A2P1/2, only two additional lasers at 368.6nm and 368.1nm to repump the v” = 1, 2 levels are needed to limit the vibrational branching loss to <10−6. These lasers are from dye laser frequency doubling in a doubling cavity.

The linewidth of laser frequency is derived from the relative frequency deviation (RMS deviation) from the current lock frequency of the reference cell calculated with the help of the PDH error function for the resonator with a free spectral range and a finesse, which is analyzed by the digital signal processor software of Matisse dye laser.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout. CW pump laser, dye laser head and PDH reference cavity; Stabilized HeNe laser; ISO optical isolator; PD photodetector; EOM Electro-optical Modulator; λ/2 half waveplate; MML Mode matching lens; λ/4 quarter waveplate; PBS Polarization beam splitter; DAQ Data Acquisition Card. The confocal cavity works as a transfer cavity. The inset shows the transmission peaks of stabilized HeNe laser and dye laser.

Fig. 2
Fig. 2

The flow chart of the laser stabilization experiment.

Fig. 3
Fig. 3

The voltage of the transfer cavity and the reference cavity via time when the frequency of the triangular wave is 50 Hz during the time of 100 minutes. Both voltages are ones before amplification.

Fig. 4
Fig. 4

(a) Frequency deviation of dye laser relative to HeNe laser when it is locked using scanning cavity; (b) frequency drift of the dye laser when it is only locked on PDH reference cavity, the drift value is relative to the initial frequency at 519.194283 THz.

Tables (1)

Tables Icon

Table 1 Locking Parameters of Dye Laser under Free-running, PDH Locking, and Transfer Cavity Modes

Metrics