Abstract

We demonstrate a small foot print (600 nm wide) 1D silicon photonic crystal electro-optic modulator operating with only a 50 mV swing voltage and 0.1 fJ/bit switching energy at GHz speeds, which are the lowest values ever reported for a silicon electro-optic modulator. A 3 dB extinction ratio is demonstrated with an ultra-low 50 mV swing voltage with a total device energy consumption of 42.8 fJ/bit, which is dominated by the state holding energy. The total energy consumption is reduced to 14.65 fJ/bit for a 300 mV swing voltage while still keeping the switching energy at less than 2 fJ/bit. Under optimum voltage conditions, the device operates with a maximum speed of 3 Gbps with 8 dB extinction ratio, which rises to 11 dB for a 1 Gbps modulation speed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors

Long Chen, Kyle Preston, Sasikanth Manipatruni, and Michal Lipson
Opt. Express 17(17) 15248-15256 (2009)

Low-voltage high-speed coupling modulation in silicon racetrack ring resonators

Rui Yang, Linjie Zhou, Haike Zhu, and Jianping Chen
Opt. Express 23(22) 28993-29003 (2015)

Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation

Joshua Hendrickson, Richard Soref, Julian Sweet, and Walter Buchwald
Opt. Express 22(3) 3271-3283 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
    [Crossref]
  2. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  4. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [Crossref] [PubMed]
  5. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
    [Crossref] [PubMed]
  6. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
    [Crossref] [PubMed]
  7. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
    [Crossref] [PubMed]
  8. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).
  9. D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
    [Crossref]
  10. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
    [Crossref] [PubMed]
  11. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  12. M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
    [Crossref]
  13. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  14. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref] [PubMed]
  15. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 18(3), 3059–3070 (2010).
    [Crossref] [PubMed]
  16. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
    [Crossref] [PubMed]
  17. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
    [Crossref] [PubMed]
  18. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
    [Crossref]
  19. R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” Proc. IEEE Int. Conf. Group IV Photon, 365 −367 (2008).
    [Crossref]
  20. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
    [Crossref] [PubMed]
  21. P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).
  22. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [Crossref] [PubMed]
  23. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
    [Crossref] [PubMed]
  24. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [Crossref]
  25. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008).
    [Crossref]
  26. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [Crossref] [PubMed]
  27. S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
    [Crossref] [PubMed]
  28. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  29. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]

2014 (2)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

2013 (2)

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

2010 (7)

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 18(3), 3059–3070 (2010).
[Crossref] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[Crossref] [PubMed]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

2009 (4)

2008 (2)

2007 (3)

2005 (1)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

2000 (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Alic, N.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Al-Saadi, A.

Amberg, P.

Asghari, M.

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Block, B. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Boninelli, S.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

Cardile, P.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Cassan, E.

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Chen, L.

Chetrit, Y.

Ciftcioglu, B.

Crozat, P.

Cunningham, J. E.

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Debnath, K.

Dong, P.

Eichler, H. J.

Faolain, L. O.

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Fédéli, J. M.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[Crossref] [PubMed]

Feng, D.

Franke, B. A.

Franzò, G.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Galli, M.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Gerace, D.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

Green, W. M.

Hartmann, J. M.

Ho, R.

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Hu, Y.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Izhaky, N.

Kawasaki, K.

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Kopp, C.

Krauss, T. F.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Krishnamoorthy, A. V.

Kung, C.-C.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Kupijai, S.

Kuramochi, E.

Lexau, J.

Li, G.

Liang, H.

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Liao, L.

Liao, S.

Lipson, M.

Liu, A.

Lo Savio, R.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Luo, Y.

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Matsuo, S.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

Meister, S.

Mekis, A.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Nguyen, H.

Nishiguchi, K.

Notomi, M.

Nozaki, K.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

O’Faolain, L.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

Osmond, J.

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Paniccia, M.

Pinckney, N.

Pinguet, T.

Polzer, A.

Portalupi, S. L.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

Preston, K.

Priolo, F.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

Qian, W.

Radic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Raj, K.

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Rhee, H.

Richter, H. H.

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Roh, Y.-G.

Rooks, M. J.

Rubin, D.

Schmidt, B.

Schneider, T.

Sekaric, L.

Shafiiha, R.

Shakoor, A.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

Shakya, J.

Shi, J.

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Shinya, A.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Shubin, I.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Steffan, A. G.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Stolarek, D.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Tanabe, T.

Taniyama, H.

Thacker, H.

Theiss, C.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tian, H.

Tillack, B.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Vivien, L.

Vlasov, Y. A.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Welna, K.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

Woggon, U.

Xu, Q.

Yao, J.

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Zheng, D.

Zheng, X.

Zimmermann, H.

Zimmermann, L.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Appl. Phys. Lett. (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O. Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett. 98(20), 203506 (2011).

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Solid-State Circuits (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. J. Thomson, F. Y. Gardes, J. M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photon. Rev. 7(1), 114–121 (2013).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

New Community (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” New Community 5, 4008 (2014).

Opt. Commun. (1)

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

Opt. Express (16)

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 18(3), 3059–3070 (2010).
[Crossref] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[Crossref] [PubMed]

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
[Crossref] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[Crossref] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[Crossref] [PubMed]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
[Crossref] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
[Crossref] [PubMed]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
[Crossref] [PubMed]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Science (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000).
[Crossref] [PubMed]

Other (1)

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” Proc. IEEE Int. Conf. Group IV Photon, 365 −367 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of a PhC cavity with 50 nm thick side slabs and 0th order mode profile calculated by 3D FDTD. (b) Schematic of a 1D silicon PhC cavity EO modulator showing the physical dimensions the device.
Fig. 2
Fig. 2 (a) Transmission spectrum of the PhC cavity showing a 20K Q-factor. (b) IV curve of the device showing 900 Ω differential resistance.
Fig. 3
Fig. 3 Numerical estimation of device capacitance. Color plot gives the electric field strength and black arrows show the electric field lines. Without fringing fields the capacitance is 0.02 fF (a) and it increases to 0.08 fF when the fringing fields are included (b).
Fig. 4
Fig. 4 Eye diagrams for 1 Gbps obtained with swing voltages of (a) 50 mV and (b) 300 mV showing ERs of 3 dB and 9.2 dB, respectively. (c) Schematic of the input electrical signal. (d) ER vs swing voltage for 1 Gbps modulation speed.
Fig. 5
Fig. 5 Small signal frequency response of the device showing a 3 dB bandwidth of 1.3 GHz.
Fig. 6
Fig. 6 (a-c) Eye diagrams for optimum input voltage conditions to achieve maximum modulation speed and ER. A maximum modulation speed of 3 Gbps with 8 dB ER (a) while 11 dB ER is demonstrated for 1 Gbps (c). (d) Modulation speed vs ER.
Fig. 7
Fig. 7 Modulated optical signal showing fall and rise times of 388 and 296 ps, respectively.
Fig. 8
Fig. 8 Fall times (a) and rise times (b) of modulated optical signal for different swing voltages while keeping Vtop fixed at 1.1 V. (c) Comparison of fall times and rise times for different swing voltages at fixed Vtop.
Fig. 9
Fig. 9 (a) Switching energy as a function of swing voltage estimated by method (a). (b) Holding and total energy consumption as a function of swing voltage. The switching energy contribution in the total energy is estimated by using method (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s = 1 4 Q c V p p
Q c = ( I o n - I o f f ) τ

Metrics