Abstract

We have investigated a hybrid plasmonic-photonic mode in Si and Ge channel waveguides over the 1.55-8.0 μm wavelength range. A 10-nm Cu ribbon was buried midway within a Si3N4 “photonic slot” centered in the semiconductor strip. For the TMo mode, propagation lengths L of several millimeters are predicted for a waveguide cross-section of about 0.7λ/n x 0.7λ/n which offers optical confinement mainly within the ~λ2/400-area slot. The L increased strongly with λ. For 0.4λ/n x 0.4λ/n channels, we found multi-centimeter propagation, but there ~60% of the propagating energy had leaked out into the thick, all-around Si3N4 cladding.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures

Richard Soref, Joshua Hendrickson, and Justin W. Cleary
Opt. Express 20(4) 3814-3824 (2012)

Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation

Tarun Sharma and Mukesh Kumar
Appl. Opt. 53(9) 1954-1957 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
    [Crossref]
  2. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
    [Crossref] [PubMed]
  3. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010).
    [Crossref] [PubMed]
  4. C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
    [Crossref]
  5. J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
    [Crossref]
  6. R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15(8), 5008–5017 (2007).
    [Crossref] [PubMed]
  7. Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
    [Crossref] [PubMed]
  8. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
    [Crossref]
  9. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
    [Crossref]
  10. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
    [Crossref] [PubMed]
  11. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  12. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, 3rd edition (McGraw-Hill, 2009), Chap. 4.
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Chap. 1–3.
  14. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009).
    [Crossref] [PubMed]
  15. R. A. Norwood, “Organic electro-optic materials and devices: molecular engineering driving device performance and technology innovation,” paper SM2M.1 presented at the Conference on Lasers and Electro-Optics, San Jose, CA, 8 June 2014.
    [Crossref]
  16. C. Ye, Z. Li, R. Soref, and V. J. Sorger, “Strong ITO index modulation for switching devices,” paper JM3B.1 presented at the OSA Photonics in Switching Topical Meeting, San Diego, CA, 13 July 2014.
    [Crossref]

2014 (2)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

2013 (2)

Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
[Crossref] [PubMed]

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

2010 (4)

2009 (1)

2007 (1)

2005 (1)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

2004 (1)

Adato, R.

Aitchison, J. S.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Alam, M. Z.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Almeida, V. R.

Avrutsky, I.

Bai, P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Barrios, C. A.

Bian, Y.

Buchwald, W.

Chu, H. S.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Dmitri, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Duley, W. W.

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Gong, Q.

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Guo, J.

Hainberger, R.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Hegde, R.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Hu, A.

Huang, C.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

Kimerling, L. C.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

Kristy, C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Lamond, R. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

Li, E. P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Li, Z. R.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

Lipson, M.

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Meier, J.

Michel, J.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

Mojahedi, M.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref] [PubMed]

Mu, J.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

Muellner, P.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Pickus, S. K.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Soref, R.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[Crossref] [PubMed]

Sorger, V. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

Takeshi, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Wellenzohn, M.

Wen, J. Z.

Xu, Q.

Xue, X. J.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

Zhang, T.

Zhang, X. Y.

Zhou, Y.

Appl. Phys. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, K. Dmitri, Y. Matsuzaki, K. C. Vernon, C. Kristy, K. Yamaguchi, T. Okamoto, T. Takeshi, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nano-scale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[Crossref]

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

IEEE Photon. J. (1)

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5(4), 2202411 (2013).
[Crossref]

Laser Photon. Rev. (1)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Other (4)

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, 3rd edition (McGraw-Hill, 2009), Chap. 4.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Chap. 1–3.

R. A. Norwood, “Organic electro-optic materials and devices: molecular engineering driving device performance and technology innovation,” paper SM2M.1 presented at the Conference on Lasers and Electro-Optics, San Jose, CA, 8 June 2014.
[Crossref]

C. Ye, Z. Li, R. Soref, and V. J. Sorger, “Strong ITO index modulation for switching devices,” paper JM3B.1 presented at the OSA Photonics in Switching Topical Meeting, San Diego, CA, 13 July 2014.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Two approaches to infrared channel waveguides built upon a “silicon-on-nitride” chip: left drawing (a) has the Si channel clad by air above the nitride layer; right drawing (b) has the channel embedded completely or clad-all-around by Si3N4. Here green represents silicon and yellow denotes Si3N4.
Fig. 2
Fig. 2 Cross-section view of the hybrid slot/surface-plasmon-polariton (HSSPP) waveguide built within a Si channel (structure at left) and in a Ge channel (structure at right). The thickness of the buried metal ribbon is fixed at 10 nm. There are two Si3N4 layers or “gaps” of thickness t that surround the Cu film. We can think of t as the “half slot” thickness.
Fig. 3
Fig. 3 Electric field distributions for HSSPP modes in Si channels with (a) air cladding and (b) all-around Si3N4 cladding. W x H = 0.4λ x 0.2λ, with λ = 3 μm, t = 20 nm, and Cu = 10 nm. The complex effective index is listed at the top. Field strength is shown in false color; the width dimension is x, and the height dimension is y.
Fig. 4
Fig. 4 L versus W of the Si channel with different fixed heights at the wavelength of: (a) 3μm, (b) 6μm using t = 20nm.
Fig. 5
Fig. 5 L versus H for the Si channel with different fixed widths at (a) λ = 3μm, (b) λ = 6μm using t = 20nm.
Fig. 6
Fig. 6 L versus t in a silicon HSSPP structure with W = 0.1λ and H = 0.15λ at λ = 3 μm.
Fig. 7
Fig. 7 L versus λ for Si HSSPP structures having different gap materials: SiO2, Al2O3 and Si3N4. We used λ = 3 μm, t = 30 nm, with W = 0.1λ and H = 0.2λ.
Fig. 8
Fig. 8 L versus (a) W of the Ge channel with different fixed H; (b) H of the Ge channel with different W at λ = 3μm with t = 20nm.
Fig. 9
Fig. 9 Mode distribution in Si channel at λ = 3μm, t = 20 nm with: (a) W = 0.1λ and H = 0.125λ; (b) W = 0.05λ and H = 0.8λ. In both cases, the five layers are: poly-Si, Si3N4, Cu, Si3N4 and Si.
Fig. 10
Fig. 10 Electric field distributions for HSSPP modes in Si channels having different widths of the Cu ribbon: (a) 0.5W ribbon (b) 0.25W ribbon. Here W = 0.4λ, H = 0.2λ, t = 20 nm and λ = 3μm. The 10-nm ribbon is embedded in a 50-nm Si3N4 slot.

Metrics