Abstract

We demonstrate mid-infrared spectroscopic imaging using a unique optical fiber probe consisting of an array of Ge waveguide cores embedded in a silica fiber matrix. Biological tissue slices are characterized to illustrate its potential endoscopic uses. The fiber probe based transmission measurements show excellent agreement with the result obtained from standard Fourier Transform Infrared spectroscopy transmission measurements in the wavelength range of 3289.8 nm to 3383.3 nm, where fat and muscle tissues could be spectroscopically distinguished.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan
Opt. Express 20(4) 4168-4175 (2012)

Infrared hollow optical fiber probes for reflectance spectral imaging

Chenhui Huang, Saiko Kino, Takashi Katagiri, and Yuji Matsuura
Appl. Opt. 54(14) 4602-4607 (2015)

Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging

L. H. Kidder, I. W. Levin, E. Neil Lewis, V. D. Kleiman, and E. J. Heilweil
Opt. Lett. 22(10) 742-744 (1997)

References

  • View by:
  • |
  • |
  • |

  1. P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: From planetary to cellular systems,” Appl. Spectrosc. 52(3), 106–120 (1998).
    [Crossref]
  2. R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
    [Crossref] [PubMed]
  3. D. Chapman and H. H. Mantsch, “Infrared spectroscopy of biomolecules,” (John Wiley, 1996).
  4. B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
    [Crossref] [PubMed]
  5. N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
    [Crossref] [PubMed]
  6. S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
    [Crossref] [PubMed]
  7. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30(5), 507–509 (2005).
    [Crossref] [PubMed]
  8. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
    [Crossref] [PubMed]
  9. J. A. Harrington, “Infrared Fibers and Their Applications,” (SPIE, 2004).
  10. A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
    [Crossref] [PubMed]
  11. W. Petrich, “Mid-Infrared and Raman Spectroscopy for Medical Diagnostics,” Appl. Spectrosc. Rev. 36(2-3), 181–237 (2001).
    [Crossref]
  12. C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” J. Spectrosc. 20(5-6), 195–218 (2006).
    [Crossref]
  13. M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
    [Crossref] [PubMed]
  14. T. D. Wang and J. Van Dam, “Optical biopsy: A new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
    [Crossref] [PubMed]
  15. M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
    [PubMed]
  16. A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
    [Crossref] [PubMed]
  17. T. A. Boutacoff, D. M. Buzawa, and T. S. Nelsen, “Mid-infrared laser endoscope,” US Patent 5147354 A (1992).
  18. L. J. Bonnell, D. C. Leiner, and T. Brukilacchio, “Endoscope for imaging infrared emissions within the range of 2 to 14 microns,” US Patent 5833596 A (1998).
  19. U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
    [Crossref] [PubMed]
  20. P. A. West, M. P. G. Bostrom, P. A. Torzilli, and N. P. Camacho, “Fourier transform infrared spectral analysis of degenerative cartilage: An infrared fiber optic probe and imaging study,” Appl. Spectrosc. 58(4), 376–381 (2004).
    [Crossref] [PubMed]
  21. H. M. Heise, L. Küpper, and L. N. Butvina, “Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes,” Spectrochim. Acta Part B At. Spectrosc. 57, 1649–1663 (2002).
  22. A. Katzir and R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47(2), 149–158 (1982).
    [Crossref]
  23. L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
    [Crossref]
  24. M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
    [Crossref]
  25. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  26. M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
    [Crossref] [PubMed]
  27. S. G. Kazarian and K. L. A. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758(7), 858–867 (2006).
    [Crossref] [PubMed]
  28. J. J. Sahlin and N. A. Peppas, “Near-field FTIR imaging: a technique for enhancing spatial resolution in FTIR microscopy,” J. Appl. Polym. Sci. 63(1), 103–110 (1997).
    [Crossref]

2012 (3)

2007 (1)

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[Crossref] [PubMed]

2006 (3)

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” J. Spectrosc. 20(5-6), 195–218 (2006).
[Crossref]

S. G. Kazarian and K. L. A. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758(7), 858–867 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

2003 (2)

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

2002 (3)

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

H. M. Heise, L. Küpper, and L. N. Butvina, “Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes,” Spectrochim. Acta Part B At. Spectrosc. 57, 1649–1663 (2002).

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

2001 (1)

W. Petrich, “Mid-Infrared and Raman Spectroscopy for Medical Diagnostics,” Appl. Spectrosc. Rev. 36(2-3), 181–237 (2001).
[Crossref]

2000 (3)

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

1998 (1)

1997 (1)

J. J. Sahlin and N. A. Peppas, “Near-field FTIR imaging: a technique for enhancing spatial resolution in FTIR microscopy,” J. Appl. Polym. Sci. 63(1), 103–110 (1997).
[Crossref]

1982 (1)

A. Katzir and R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47(2), 149–158 (1982).
[Crossref]

Alencar, H.

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Anasagasti, L.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Arens, J. F.

Arieli, R.

A. Katzir and R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47(2), 149–158 (1982).
[Crossref]

Badding, J. V.

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Baril, N. F.

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Barnes, E.

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

Bartick, E. G.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[Crossref] [PubMed]

Bhargava, R.

Bindig, U.

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

Bostrom, M. P. G.

Butvina, L. N.

H. M. Heise, L. Küpper, and L. N. Butvina, “Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes,” Spectrochim. Acta Part B At. Spectrosc. 57, 1649–1663 (2002).

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
[Crossref]

Camacho, N. P.

Carden, A.

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

Chan, K. L. A.

S. G. Kazarian and K. L. A. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758(7), 858–867 (2006).
[Crossref] [PubMed]

Cho, A.

Colarusso, P.

Crane, N. J.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[Crossref] [PubMed]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Delgado, J. A.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Dianov, E. M.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
[Crossref]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Fraser, J. C.

Funovics, M. A.

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

Gmachl, C.

Gopalan, V.

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Guo, B.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

He, R.

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

Heise, H. M.

H. M. Heise, L. Küpper, and L. N. Butvina, “Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes,” Spectrochim. Acta Part B At. Spectrosc. 57, 1649–1663 (2002).

Huffman, S.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[Crossref] [PubMed]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Katzir, A.

A. Katzir and R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47(2), 149–158 (1982).
[Crossref]

Kazarian, S. G.

S. G. Kazarian and K. L. A. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758(7), 858–867 (2006).
[Crossref] [PubMed]

Khazaie, K.

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

Kidder, L. H.

Krafft, C.

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” J. Spectrosc. 20(5-6), 195–218 (2006).
[Crossref]

Krishnamurthi, M.

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

Ku, G.

Kuepper, L.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
[Crossref]

Küpper, L.

H. M. Heise, L. Küpper, and L. N. Butvina, “Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes,” Spectrochim. Acta Part B At. Spectrosc. 57, 1649–1663 (2002).

Le, H.

Levin, I. W.

Lewis, E. N.

Lichkova, N. V.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
[Crossref]

Liu, Z.

Luo, G.

Mahmood, U.

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

Marcon, N. E.

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Molckovsky, A.

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

Morris, M. D.

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

Müller, G.

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

Peabody, M.

Peng, C.

Peppas, N. A.

J. J. Sahlin and N. A. Peppas, “Near-field FTIR imaging: a technique for enhancing spatial resolution in FTIR microscopy,” J. Appl. Polym. Sci. 63(1), 103–110 (1997).
[Crossref]

Pérez, A.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Perlman, R. S.

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[Crossref] [PubMed]

Petrich, W.

W. Petrich, “Mid-Infrared and Raman Spectroscopy for Medical Diagnostics,” Appl. Spectrosc. Rev. 36(2-3), 181–237 (2001).
[Crossref]

Sahlin, J. J.

J. J. Sahlin and N. A. Peppas, “Near-field FTIR imaging: a technique for enhancing spatial resolution in FTIR microscopy,” J. Appl. Polym. Sci. 63(1), 103–110 (1997).
[Crossref]

Sazio, P. J. A.

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Schwarzmaier, H.-J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Sergo, V.

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” J. Spectrosc. 20(5-6), 195–218 (2006).
[Crossref]

Shim, M. G.

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Sivco, D.

Song, L.-M. W. K.

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Sparks, J. R.

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification,” Opt. Express 20(4), 4168–4175 (2012).
[Crossref] [PubMed]

Stolik, S.

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

Su, H. S.

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

Temnykh, I. A.

Torzilli, P. A.

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Van Dam, J.

T. D. Wang and J. Van Dam, “Optical biopsy: A new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Wang, L. V.

Wang, T. D.

T. D. Wang and J. Van Dam, “Optical biopsy: A new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Wang, Y.

Wäsche, W.

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

Weissleder, R.

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

West, P. A.

Wilson, B. C.

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Winter, H.

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Zavgorodnev, V. N.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
[Crossref]

Zelianeos, K.

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, H.

Appl. Phys. Lett. (1)

M. Krishnamurthi, E. Barnes, J. R. Sparks, R. He, N. F. Baril, P. J. A. Sazio, J. V. Badding, and V. Gopalan, “A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging,” Appl. Phys. Lett. 101(2), 021108 (2012).
[Crossref]

Appl. Spectrosc. (3)

Appl. Spectrosc. Rev. (1)

W. Petrich, “Mid-Infrared and Raman Spectroscopy for Medical Diagnostics,” Appl. Spectrosc. Rev. 36(2-3), 181–237 (2001).
[Crossref]

Biochim. Biophys. Acta (1)

S. G. Kazarian and K. L. A. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758(7), 858–867 (2006).
[Crossref] [PubMed]

Clin. Gastroenterol. Hepatol. (1)

T. D. Wang and J. Van Dam, “Optical biopsy: A new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol. 2(9), 744–753 (2004).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

A. Molckovsky, L.-M. W. K. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57(3), 396–402 (2003).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

J. J. Sahlin and N. A. Peppas, “Near-field FTIR imaging: a technique for enhancing spatial resolution in FTIR microscopy,” J. Appl. Polym. Sci. 63(1), 103–110 (1997).
[Crossref]

J. Biomed. Opt. (2)

U. Bindig, H. Winter, W. Wäsche, K. Zelianeos, and G. Müller, “Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry,” J. Biomed. Opt. 7(1), 100–108 (2002).
[Crossref] [PubMed]

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

J. Forensic Sci. (1)

N. J. Crane, E. G. Bartick, R. S. Perlman, and S. Huffman, “Infrared spectroscopic imaging for noninvasive detection of latent fingerprints,” J. Forensic Sci. 52(1), 48–53 (2007).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

A. Katzir and R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47(2), 149–158 (1982).
[Crossref]

J. Photochem. Photobiol. B (1)

S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, “Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues,” J. Photochem. Photobiol. B 57(2-3), 90–93 (2000).
[Crossref] [PubMed]

J. Spectrosc. (1)

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” J. Spectrosc. 20(5-6), 195–218 (2006).
[Crossref]

Mol. Imaging (1)

M. A. Funovics, H. Alencar, H. S. Su, K. Khazaie, R. Weissleder, and U. Mahmood, “Miniaturized multichannel near infrared endoscope for mouse imaging,” Mol. Imaging 2(4), 350–357 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Photochem. Photobiol. (1)

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Phys. Med. Biol. (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref] [PubMed]

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Spectrochim. Acta Part B At. Spectrosc. (1)

H. M. Heise, L. Küpper, and L. N. Butvina, “Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes,” Spectrochim. Acta Part B At. Spectrosc. 57, 1649–1663 (2002).

Other (5)

T. A. Boutacoff, D. M. Buzawa, and T. S. Nelsen, “Mid-infrared laser endoscope,” US Patent 5147354 A (1992).

L. J. Bonnell, D. C. Leiner, and T. Brukilacchio, “Endoscope for imaging infrared emissions within the range of 2 to 14 microns,” US Patent 5833596 A (1998).

J. A. Harrington, “Infrared Fibers and Their Applications,” (SPIE, 2004).

D. Chapman and H. H. Mantsch, “Infrared spectroscopy of biomolecules,” (John Wiley, 1996).

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications,” Proc. SPIE, Advances in Fiber Optics, 4083,238–253 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-sectional optical micrographs of (a) the input side of the fiber probe after polishing and (b) output side of the fiber probe with deposited Au/Cr film after FIB milling to expose the Ge cores.

Fig. 2
Fig. 2

Schematic of the imaging system including the OPO light source and the fiber probe imaging setup.

Fig. 3
Fig. 3

Optical micrographs of the sectioned (a) beef fat and (b) muscle slices under transmission mode. The red and blue dotted squares indicate the areas where FT-IR transmission measurements are performed through.

Fig. 4
Fig. 4

(a) Optical micrographs of the tissues being located on the input side of the fiber probe. (b) Transmitted light image of the output side of the probe. The brighter purple spots are uncovered pixels. The red (fat) and blue (muscle) dashed rhombuses indicate the regions where transmission data is measured by the fiber probe.

Fig. 5
Fig. 5

The comparison of beef muscle (blue) and fat tissue (red) transmissions measured by FT-IR (solid lines) and fiber probe (dots).

Fig. 6
Fig. 6

Infrared images collected at the output side of the fiber probe at different wavelengths showing the contrast between the two tissue components and the intensity variation with the wavelength. The red (fat) and blue (muscle) dashed rhombuses indicate the regions where transmission data is measured by the fiber probe.

Metrics