Abstract

The metal film perforated with a micro-nano cone air hole (CAH) can serve as an optical device having asymmetric transmission. In this paper, we numerically investigate the metal film perforated with periodic arrays of cone air holes (PACAH) and find that the metal PACAH can also implement asymmetric optical transmission. In the short wave band of visible light, Al PACAH shows the most obvious effect of asymmetric optical transmission. And in the middle-long wave band, Ag PACAH shows the effect best. When RL (the radius of large end of hole) = 600 nm, RS (the radius of small end of hole) = 150 nm, t (the film thickness) = 1500 nm, and the substrate with a dielectric constant of 2.4 is placed on the side adjacent to the large end of hole, for Al PACAH (the CAHs arranged in a triangular array), the average forward transmittance and the average transmission ratio (the ratio of forward transmittance to backward one) in the region of 400 nm-600 nm are 28.4% and 7.6, respectively. Particularly, the forward transmittance and the transmission ratio at 448 nm are 43.0% and 12.4 respectively. And for Ag PACAH (the CAHs arranged in a square array), the average forward transmittance and the average transmission ratio in the region of 550 nm-800 nm are 25.4% and 5.7, respectively. Particularly, the forward transmittance and the transmission ratio at 611 nm are 36.5% and 8.5, respectively. This metal PACAH shows potential of application in secrecy equipment, such as a unidirectional optical transmission wall.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonreciprocal optical transmission through a single conical air hole in an Ag film

Nan Peng, Xiaokang Li, and Weilong She
Opt. Express 22(14) 17546-17552 (2014)

Asymmetric optical transmission through silver film with a hyperbolic air hole

Xin Li, Wanguo Liu, and Weilong She
J. Opt. Soc. Am. B 35(4) 886-891 (2018)

Optical transmission through circular hole arrays in optically thick metal films

L. Martín-Moreno and F. J. García-Vidal
Opt. Express 12(16) 3619-3628 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
    [Crossref]
  2. W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).
  3. M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
    [Crossref]
  4. Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [Crossref] [PubMed]
  5. A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14(7), 2839–2844 (2006).
    [Crossref] [PubMed]
  6. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 037602 (2005).
    [Crossref] [PubMed]
  7. S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
    [Crossref]
  8. F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
    [Crossref]
  9. C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
    [Crossref]
  10. C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
    [Crossref] [PubMed]
  11. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
    [Crossref] [PubMed]
  12. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
    [Crossref] [PubMed]
  13. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
    [Crossref]
  14. J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905–1907 (2011).
    [Crossref] [PubMed]
  15. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
    [Crossref] [PubMed]
  16. H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
    [Crossref]
  17. N. Peng, X. K. Li, and W. L. She, “Nonreciprocal optical transmission through a single conical air hole in an Ag film,” Opt. Express 22(14), 17546–17552 (2014).
    [Crossref] [PubMed]
  18. N. Peng and W. L. She, “Near-ultraviolet to green and near-infrared asymmetric optical transmission of a single conical air hole in a metal film,” to be submitted.
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domian Method (Artech House, 2000).
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  22. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  23. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  24. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]

2014 (2)

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

N. Peng, X. K. Li, and W. L. She, “Nonreciprocal optical transmission through a single conical air hole in an Ag film,” Opt. Express 22(14), 17546–17552 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (5)

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905–1907 (2011).
[Crossref] [PubMed]

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
[Crossref] [PubMed]

2010 (2)

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (1)

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

2008 (2)

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
[Crossref]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 037602 (2005).
[Crossref] [PubMed]

2004 (1)

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[Crossref]

1998 (2)

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1992 (1)

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beauvillain, P.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Beloglazov, V. I.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Biancalana, F.

F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
[Crossref]

Bloemer, M. J.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Bugar, I.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Caglayan, H.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

Cakmakyapan, S.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

Checoury, X.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Chen, H. C.

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Chen, J.

Cheng, C.

Chorvat, D.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Dagens, B.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Djurišic, A. B.

Dong, A. G.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Elazar, J. M.

Fan, S. H.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Fan, Y. X.

Fan, Z. J.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Feise, M. W.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 037602 (2005).
[Crossref] [PubMed]

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[Crossref]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[Crossref]

Gao, H.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Gao, Z. L.

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gong, Q. H.

C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

Gralak, B.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Hao, H. Y.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Hu, X. Y.

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kang, M.

Kivshar, Y. S.

A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14(7), 2839–2844 (2006).
[Crossref] [PubMed]

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 037602 (2005).
[Crossref] [PubMed]

Konorov, S. O.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Kotynski, R.

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, Q. X.

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Li, X. K.

Li, Z. Q.

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

Li, Z. Y.

Liu, D. H.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Lourtioz, J.-M.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Lu, C. C.

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

Lusakowski, J.

Magdenko, L.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Majewski, M. L.

Miroshnichenko, A. E.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ozbay, E.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[Crossref]

Peng, N.

N. Peng, X. K. Li, and W. L. She, “Nonreciprocal optical transmission through a single conical air hole in an Ag film,” Opt. Express 22(14), 17546–17552 (2014).
[Crossref] [PubMed]

N. Peng and W. L. She, “Near-ultraviolet to green and near-infrared asymmetric optical transmission of a single conical air hole in a metal film,” to be submitted.

Pinkevych, I.

Postava, K.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Rakic, A. D.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Scalora, A.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Serebryannikov, A. E.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

Shadrivov, I. V.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 037602 (2005).
[Crossref] [PubMed]

She, W. L.

N. Peng, X. K. Li, and W. L. She, “Nonreciprocal optical transmission through a single conical air hole in an Ag film,” Opt. Express 22(14), 17546–17552 (2014).
[Crossref] [PubMed]

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

N. Peng and W. L. She, “Near-ultraviolet to green and near-infrared asymmetric optical transmission of a single conical air hole in a metal film,” to be submitted.

Sidorov-Biryukov, D. A.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Skibina, N. B.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Smigaj, W.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Stolarek, M.

Szoplik, T.

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Vanwolleghem, M.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Veronis, G.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wang, C.

Wang, H. T.

Wang, Z.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Xu, J.

Xu, X. A.

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

Yang, H.

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultrahigh-contrast and wideband nanoscale photonic crystal all-optical diode,” Opt. Lett. 36(23), 4668–4670 (2011).
[Crossref] [PubMed]

Yavorskiy, D.

Yu, Z. F.

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Yu, Z. X.

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Zapata Rodríguez, C. J.

Zhang, Q. L.

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Zhang, Y. B.

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

Zheltikov, A. M.

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

Zheng, Z.

Zheng, Z. Y.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Zhou, C. Z.

Appl. Opt. (1)

Appl. Phys. B (2)

S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat, D. Chorvat, A. Scalora, and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Appl. Phys. B 78(5), 547–550 (2004).
[Crossref]

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[Crossref]

Appl. Phys. Lett. (3)

C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett. 99(5), 051107 (2011).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[Crossref]

Chin. Phys. (1)

W. L. She, Q. X. Li, Z. X. Yu, Z. L. Gao, Q. L. Zhang, and H. C. Chen, “Optical diode effect induced by two laser beams in a Mn-doped KNSBN crystal,” Chin. Phys. 12(4), 820 (1992).

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. Appl. Phys. (1)

F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 037602 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Z. F. Yu, G. Veronis, Z. Wang, and S. H. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Other (2)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domian Method (Artech House, 2000).

N. Peng and W. L. She, “Near-ultraviolet to green and near-infrared asymmetric optical transmission of a single conical air hole in a metal film,” to be submitted.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A sketch of light propagating through the metal CAH, where the dark blue and light blue arrows denote forward and backward propagations, respectively.
Fig. 2
Fig. 2 Calculation details of the metal PACAH for the forward propagation case.
Fig. 3
Fig. 3 Transmission spectra of Ag PACAHs. (a)-(b): Square arrays with a period of 1400 nm. (c)-(d): Triangular arrays with a period of 1400 nm. (e)-(f): Square arrays with a period of 1600 nm. (g)-(h): Triangular arrays with a period of 1600 nm. For (a)/(c)/(e)/(g), RL = 600 nm, RS = 150 nm, and t = 1500 nm. While for (b)/(d)/(f)/(h), RL = 480 nm, RS = 120 nm, and t = 1200 nm. The dark blue and light blue lines denote the forward and backward transmission curves respectively (similarly hereinafter).
Fig. 4
Fig. 4 Transmission spectra of Ag PACAHs with a period of 1400 nm. RL = 600 nm, RS = 150 nm, t = 1500 nm, and εS = 2.1. (a)-(d) are the square arrays, while (e)-(h) are the triangular cases. (a)/(e): Air on both sides. (b)/(f): Substrate on the side adjacent to the small end of hole, and air on the other side. (c)/(g): Substrate on the side adjacent to the large end of hole, and air on the other side. (d)/(h): Substrate on both sides.
Fig. 5
Fig. 5 Transmission spectra of Ag PACAHs with a period of 1400 nm. RL = 600 nm, RS = 150 nm, and t = 1500 nm. And the substrate is set on the side adjacent to the large end of hole. (a)-(d): Square arrays with εS = 2.1, 2.2, 2.3, and 2.4, respectively. (e)-(h): Triangular arrays with εS = 2.1, 2.2, 2.3, and 2.4, respectively.
Fig. 6
Fig. 6 Transmission spectra of Al PACAHs with a period of 1400 nm. RL = 600 nm, RS = 150 nm, and t = 1500 nm. And the substrate is set on the side adjacent to the large end of hole. (a)-(d): Square arrays with εS = 2.1, 2.2, 2.3, and 2.4, respectively. (e)-(h): Triangular arrays with εS = 2.1, 2.2, 2.3, and 2.4, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

for a square array λ max i 2 + j 2 a ε m ε d ε m + ε d ,
for a triangular array λ max 4 3 ( i 2 + i j + j 2 ) a ε m ε d ε m + ε d ,

Metrics