Abstract

A source of ultrashort pulses of light in the 2 μm region was constructed using supercontinuum broadening from an erbium mode-locked laser. The output spectrum spanned 1000 nm to 2200 nm with an average power of 250 mW. A pulse width of 39 fs for part of the spectrum in the 2000 nm region, corresponding to less than six optical cycles, was achieved. A heterodyne measurement of the free-running mode-locked laser with a narrow-linewidth continuous wave laser resulted in a near shot noise-limited beat note with a signal-to-noise ratio of 45 dB in a 10 kHz resolution bandwidth. The relative intensity noise of the broadband system was investigated over the entire supercontinuum, and the integrated relative intensity noise of the 2000 nm portion of the spectrum was 1.7 × 10−3. The long-term stability of the system was characterized, and intensity fluctuations in the spectrum were found to be highly correlated throughout the supercontinuum. Spectroscopic limitations due to the laser noise characteristics are discussed.

Full Article  |  PDF Article
OSA Recommended Articles
Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared

Brian R. Washburn, Scott A. Diddams, Nathan R. Newbury, Jeffrey W. Nicholson, Man F. Yan, and Carsten G. Jørgensen
Opt. Lett. 29(3) 250-252 (2004)

CEO stabilized frequency comb from a 1-μm Kerr-lens mode-locked bulk Yb:CYA laser

Zijiao Yu, Hainian Han, Yang Xie, Yingnan Peng, Xiaodong Xu, and Zhiyi Wei
Opt. Express 24(3) 3103-3111 (2016)

Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm

A.A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett
Opt. Express 19(10) 9995-10000 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref] [PubMed]
  2. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref] [PubMed]
  3. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  4. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
    [Crossref] [PubMed]
  5. J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nature Photonics 3, 99–102 (2009).
    [Crossref]
  6. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
    [Crossref]
  7. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
    [Crossref] [PubMed]
  8. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37, 554–556 (2012).
    [Crossref] [PubMed]
  9. I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.
  10. F. Adler and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region,” Opt. Lett. 37, 1400–1402 (2012).
    [Crossref] [PubMed]
  11. H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 μm thulium/holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21, 31390–31394 (2013).
    [Crossref]
  12. F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett. 38, 2360–2362 (2013).
    [Crossref] [PubMed]
  13. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
    [Crossref] [PubMed]
  14. A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, and M. Marangoni, “Milliwatt-level frequency combs in the 8 – 14 μm range via difference frequency generation from an Er:fiber oscillator,” Opt. Lett. 38, 1155–1157 (2013).
    [Crossref] [PubMed]
  15. A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nature Photonics 6, 440–449 (2012).
    [Crossref]
  16. C. Xu and F. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nature Photonics 7, 875–882 (2013).
    [Crossref]
  17. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
    [Crossref]
  18. C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, “High-repetition-rate optical parametric chirped-pulse amplifier producing 1-μJ, sub-100-fs pulses in the mid-infrared,” Opt. Express 17, 1340–1345 (2009).
    [Crossref] [PubMed]
  19. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-joule energy at 100 kHz,” Opt. Express 17, 3587–3594 (2009).
    [Crossref] [PubMed]
  20. N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “High-power frequency comb in the range of 2 μm based on a holmium fiber amplifier seeded by wavelength-shifted Raman solitons from an erbium-fiber laser,” Opt. Lett. 39, 1661–1664 (2014).
    [Crossref] [PubMed]
  21. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express 17, 1070–1077 (2009).
    [Crossref] [PubMed]
  22. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
    [Crossref] [PubMed]
  23. L. Nelson, E. Ippen, and H. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 19, 690–692 (1995).
  24. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33, 690–692 (2008).
    [Crossref] [PubMed]
  25. R. Kadel and B. R. Washburn, “All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,” Appl. Opt. 51, 6465–6470 (2012).
    [Crossref] [PubMed]
  26. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
    [Crossref]
  27. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [Crossref] [PubMed]
  28. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
    [Crossref] [PubMed]
  29. D. Majus and A. Dubietis, “Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study,” J. Opt. Soc. Am. B 30, 994–999 (2013).
    [Crossref]
  30. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–324 (2004).
    [Crossref] [PubMed]
  31. A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
    [Crossref]
  32. C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
    [Crossref] [PubMed]
  33. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
    [Crossref] [PubMed]

2014 (2)

2013 (7)

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

D. Majus and A. Dubietis, “Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study,” J. Opt. Soc. Am. B 30, 994–999 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 μm thulium/holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21, 31390–31394 (2013).
[Crossref]

F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett. 38, 2360–2362 (2013).
[Crossref] [PubMed]

A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, and M. Marangoni, “Milliwatt-level frequency combs in the 8 – 14 μm range via difference frequency generation from an Er:fiber oscillator,” Opt. Lett. 38, 1155–1157 (2013).
[Crossref] [PubMed]

C. Xu and F. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nature Photonics 7, 875–882 (2013).
[Crossref]

2012 (7)

2011 (3)

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

2010 (1)

2009 (4)

2008 (3)

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

2004 (2)

1995 (1)

L. Nelson, E. Ippen, and H. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 19, 690–692 (1995).

1993 (1)

Adler, F.

Allison, T. K.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

Bates, P. K.

Benko, C.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

Bethge, J.

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Biegert, J.

Brida, D.

Byer, R. L.

Cassinerio, M.

Chalus, O.

Chen, L.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Cingöz, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

Coddington, I.

Coluccelli, N.

Cossel, K. C.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Cousin, S. L.

Demirbas, U.

Deschênes, J.-D.

Dias, F.

Diddams, S. A.

Dong, L.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Dubietis, A.

Dudley, J. M.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Engelbrecht, M.

Erny, C.

Fehrenbacher, D.

Fermann, M.

Fermann, M. E.

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Gallmann, L.

Galzerano, G.

Gambetta, A.

Gatti, D.

Genest, J.

Genty, G.

Giaccari, P.

Godin, T.

Gohle, C.

Goto, T.

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nature Photonics 3, 99–102 (2009).
[Crossref]

Haag, M.

Haensch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nature Photonics 6, 440–449 (2012).
[Crossref]

Hartl, I.

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref] [PubMed]

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Hati, A.

Haus, H.

L. Nelson, E. Ippen, and H. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 19, 690–692 (1995).

Haxsen, F.

Heese, C.

Hemmer, M.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

Holzwarth, R.

Hoogland, H.

Hori, T.

Huber, R.

Hundertmark, H.

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

Ippen, E.

L. Nelson, E. Ippen, and H. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 19, 690–692 (1995).

Iwakuni, K.

Jiang, J.

Johnson, T. A.

Kadel, R.

Kane, D. J.

Keilmann, F.

Keller, U.

Kolomenskii, A. A.

Kracht, D.

Krauss, G.

Kudlinski, A.

Kumkar, S.

Laporta, P.

Larger, L.

Lee, C.-C.

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Leindecker, N.

Leitenstorfer, A.

Majus, D.

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nature Photonics 3, 99–102 (2009).
[Crossref]

Marandi, A.

Marangoni, M.

Martin, M. J.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

McKay, H.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Mohr, C.

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Mussot, A.

Neely, T. W.

Nelson, L.

L. Nelson, E. Ippen, and H. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 19, 690–692 (1995).

Newbury, N. R.

Nishizawa, N.

Osterman, S.

Picque, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nature Photonics 6, 440–449 (2012).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nature Photonics 3, 99–102 (2009).
[Crossref]

Rieker, G. B.

Ruehl, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33, 690–692 (2008).
[Crossref] [PubMed]

Salem, A. B.

Sánchez, D.

Saucier, P.

Scheu, R.

Schibli, T. R.

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nature Photonics 6, 440–449 (2012).
[Crossref]

Schuessler, H. A.

Schunemann, P. G.

Sell, A.

Sinclair, L. C.

Smolarski, M.

Strohaber, J.

Suzuki, S.

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Swann, W.

Swann, W. C.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Sylvestre, T.

Takayanagi, J.

Thai, A.

Thomas, B.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Trebino, R.

Tremblay, P.

Vodopyanov, K. L.

Wandt, D.

Washburn, B. R.

Wetzel, B.

Wise, F.

C. Xu and F. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nature Photonics 7, 875–882 (2013).
[Crossref]

Wunram, M.

Xu, C.

C. Xu and F. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nature Photonics 7, 875–882 (2013).
[Crossref]

Ycas, G.

Ye, J.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Yost, D. C.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

Zghal, M.

Zhu, F.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Nelson, E. Ippen, and H. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 19, 690–692 (1995).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2011).
[Crossref]

Nature Photonics (4)

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nature Photonics 3, 99–102 (2009).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Haensch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature Photonics 502, 355–359 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nature Photonics 6, 440–449 (2012).
[Crossref]

C. Xu and F. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nature Photonics 7, 875–882 (2013).
[Crossref]

Opt. Express (10)

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express 17, 1070–1077 (2009).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref] [PubMed]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref] [PubMed]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–324 (2004).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
[Crossref] [PubMed]

C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, “High-repetition-rate optical parametric chirped-pulse amplifier producing 1-μJ, sub-100-fs pulses in the mid-infrared,” Opt. Express 17, 1340–1345 (2009).
[Crossref] [PubMed]

O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-joule energy at 100 kHz,” Opt. Express 17, 3587–3594 (2009).
[Crossref] [PubMed]

H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 μm thulium/holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21, 31390–31394 (2013).
[Crossref]

Opt. Lett. (10)

F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett. 38, 2360–2362 (2013).
[Crossref] [PubMed]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref] [PubMed]

A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, and M. Marangoni, “Milliwatt-level frequency combs in the 8 – 14 μm range via difference frequency generation from an Er:fiber oscillator,” Opt. Lett. 38, 1155–1157 (2013).
[Crossref] [PubMed]

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “High-power frequency comb in the range of 2 μm based on a holmium fiber amplifier seeded by wavelength-shifted Raman solitons from an erbium-fiber laser,” Opt. Lett. 39, 1661–1664 (2014).
[Crossref] [PubMed]

F. Adler and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region,” Opt. Lett. 37, 1400–1402 (2012).
[Crossref] [PubMed]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref] [PubMed]

G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
[Crossref] [PubMed]

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37, 554–556 (2012).
[Crossref] [PubMed]

C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012).
[Crossref] [PubMed]

M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33, 690–692 (2008).
[Crossref] [PubMed]

Phys. Rev. A (1)

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Other (1)

I. Hartl, C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, and T. R. Schibli, “Ultra-low phase-noise Tm-fiber frequency comb with an intra-cavity graphene electro-optic modulator,” in “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTh1J.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the PM supercontinuum source discussed in the presented work (note: not drawn to scale).
Fig. 2
Fig. 2 Top: Measured spectrum after the HNLF. Bottom: Spectral output near 2 μm for varying Er amplifier average output powers, denoted on the legend. The depletions near 1.9 μm are due to water absorption in the OSA.
Fig. 3
Fig. 3 Top: Pulse retrieved from SHG FROG measurement of compressed pulse. Bottom: Retrieved FROG and OSA-measured spectra of compressed pulses.
Fig. 4
Fig. 4 Heterodyne beat note of doubled supercontinuum frequency comb with a single frequency laser near 990 nm.
Fig. 5
Fig. 5 Top: mean optical spectrum over 2.5 days of measurement. Middle: RMS deviation from the mean of each resolution element. Bottom: Contour plot of intensity variation of the source spectrum over 2.5 days. The percent deviation from the mean intensity value for each resolution element of the spectrometer is depicted by the color contour.
Fig. 6
Fig. 6 RMS deviation of the integrated 1.85 μm to 2.2 μm peak power from the mean value over 2.5 days.
Fig. 7
Fig. 7 Wavelength-dependent correlations of time-dependent spectral intensity fluctuations. The mean optical spectrum is plotted on a linear scale above and to the right of the correlation contour plot.
Fig. 8
Fig. 8 RIN of Er-oscillator, in solid grey, and supercontinuum, in solid black. The integrated RIN from 10 MHz, shown on the right-hand axis, is depicted with dashed lines.
Fig. 9
Fig. 9 RIN of long-pass-filtered portions of the supercontinuum. The integrated RIN from 10 MHz, shown on the right-hand axis, is depicted with dashed lines.
Fig. 10
Fig. 10 Integrated RIN of 5 nm FWHM portions of the supercontinuum. The integrated RIN values are shown as circles overlaid on the optical spectrum, which is plotted as a solid line.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ ( λ 1 , λ 2 ) = I ( λ 1 ) I ( λ 2 ) I ( λ 1 ) I ( λ 2 ) ( I 2 ( λ 1 ) I ( λ 1 ) 2 ) ( I 2 ( λ 2 ) I ( λ 2 ) 2 ) .

Metrics