Abstract

We put forward a double-looped Mach-Zehnder interferometer for acquiring continuous ring-down interferograms with two fiber-loop cavities with slightly different optical path lengths. Each group of pulses through the sample and reference loops creates a ring-down pulse train with equal time intervals in Vernier fashion, and interferes with each other to produce multiple ring-down interferograms successively by scanning of a delay line. The system requires a scanning range of only a few millimeters to obtain multiple ring-down interferograms. In a proof-of-concept demonstration, the intrinsic losses of two loops are estimated. The measured combined-loss of both loops is compared to the sum of the loop losses measured separately with a conventional fiber-loop ring-down system. The result obtained using the proposed system exhibits a difference of only 0.06 dB with that of the reference system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method

Yanjie Zhao, Jun Chang, Jiasheng Ni, Qingpu Wang, Tongyu Liu, Chang Wang, Pengpeng Wang, Guangping Lv, and Gangding Peng
Opt. Express 22(9) 11244-11253 (2014)

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Ai-Ping Luo, Zhi-Chao Luo, Wen-Cheng Xu, and Hu Cui
Opt. Express 18(6) 6056-6063 (2010)

Sensitivity enhancement of fiber loop cavity ring-down pressure sensor

Yajun Jiang, Dexing Yang, Daqing Tang, and Jianlin Zhao
Appl. Opt. 48(32) 6082-6087 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
    [Crossref]
  2. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
    [Crossref]
  3. A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [Crossref]
  4. A. Karpf and G. N. Rao, “Trace detection of no2 using cavity ring-down spectroscopy and a diode laser,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2013), paper JW2A.73.
    [Crossref]
  5. G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
    [Crossref]
  6. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
    [Crossref]
  7. Z. Wang, M. Jiang, H. Xu, and R. Du, “New optical fiber micro-bend pressure sensors based on fiber-loop ringdown,” in Proccedings of International Conference on Information, Computing and Telecommunications, (Elsevier, 2012), pp. 4234–4238.
    [Crossref]
  8. H. Qiu, Y. Qiu, Z. Chen, B. Fu, X. Chen, and G. Li, “Multimode fiber loop ring down spectroscopy for pressure measurement,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2007), paper CThKK6.
    [Crossref]
  9. C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: Pressure sensor,” Appl. Opt. 43(35), 6458–6464 (2004).
    [Crossref] [PubMed]
  10. C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
    [Crossref]
  11. T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
    [Crossref]
  12. C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
    [Crossref] [PubMed]
  13. C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
    [Crossref] [PubMed]
  14. H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
    [Crossref] [PubMed]
  15. H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
    [Crossref] [PubMed]
  16. H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
    [Crossref]
  17. W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
    [Crossref]
  18. J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
    [Crossref]
  19. Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
    [Crossref]
  20. L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
    [Crossref]
  21. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: Theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
    [Crossref] [PubMed]
  22. O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
    [Crossref]
  23. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  24. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  25. D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
    [Crossref] [PubMed]
  26. J. H. Kim, W. S. Kwon, H. Lee, K.-S. Kim, and S. Kim, “A novel method to acquire ring-down interferograms using a double-looped mach-zehnder interferometer,” in Conference on Lasers & Electro-Optics: Science and Innovations, (Optical Society of America, 2014), paper SM3E. 3.
    [Crossref]
  27. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses: The Measurement of Ultrashort Laser Pulses (Springer, 2000).
  28. S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (swnt-sa) with an er-doped all-fiber laser,” Opt. Express 20(12), 12966–12974 (2012).
    [Crossref] [PubMed]
  29. D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
    [Crossref]
  30. A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
    [Crossref]
  31. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
    [Crossref]
  32. N. Ming, H. Y. Yang, S. D. Xiong, and Y. M. Hu, “Investigation of polarization-induced fading in fiber-optic interferometers with polarizer-based polarization diversity receivers,” Appl. Opt. 45(11), 2387–2390 (2006).
    [Crossref] [PubMed]
  33. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]

2013 (1)

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

2012 (4)

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (swnt-sa) with an er-doped all-fiber laser,” Opt. Express 20(12), 12966–12974 (2012).
[Crossref] [PubMed]

2011 (2)

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

2010 (2)

R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: Theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
[Crossref] [PubMed]

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

2009 (2)

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

2008 (1)

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

2007 (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

2006 (1)

2005 (1)

C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
[Crossref]

2004 (2)

C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: Pressure sensor,” Appl. Opt. 43(35), 6458–6464 (2004).
[Crossref] [PubMed]

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
[Crossref]

2003 (1)

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

2002 (2)

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref] [PubMed]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

2001 (1)

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

1995 (1)

Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
[Crossref]

1993 (1)

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

1991 (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

1988 (2)

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

1982 (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

1927 (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Atherton, K.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Barnes, J. A.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Bescherer, K.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Bielecki, Z.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Boeck, R.

Brown, R. S.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Capmany, J.

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

Chandler, D. W.

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

Cheung, A. H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Chevalier, D.

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

Chrostowski, L.

Culshaw, B.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Dandridge, A.

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Deacon, D. A. G.

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Dürr, C. J.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Frigyes, I.

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

He, J.-J.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Herath, C.

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

Hiraoka, T.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Hori, M.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Houston, W. V.

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Hu, Y. M.

Huang, H. F.

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

Ito, M.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Ja, Y.

Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
[Crossref]

Jaeger, N. A.

Jin, L.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Kaya, M.

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Kim, J.

Kim, K.-S.

Kim, S.

Kozin, I.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Lehmann, K. K.

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

Li, M.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Litman, J.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Loock, H. P.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Medrzycki, R.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Mikolajczyk, J.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Ming, N.

Moore, D. R.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

Moore, D. S.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
[Crossref]

Muriel, M. A.

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

Nishizawa, N.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Nowakowski, M.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Ohta, T.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

OKeefe, A.

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Oleschuk, R. D.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Priest, R. G.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

Rouger, N.

Rutecka, B.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Ryu, S. Y.

Scherrer, S. T.

Schiller, S.

Schwelb, O.

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Stacewicz, T.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Stewart, G.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Stowe, D. W.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

Strecker, K. E.

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tong, Z.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Tveten, A. B.

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Waechter, H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Wang, C.

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: Pressure sensor,” Appl. Opt. 43(35), 6458–6464 (2004).
[Crossref] [PubMed]

Wang, C. J.

C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
[Crossref]

Wojtas, J.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Xiong, S. D.

Yang, H. Y.

Yu, H. B.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Anal. Chem. (1)

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Chem. Phys. Lett. (1)

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Fiber Integrated Opt. (2)

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

J. Biomed. Opt. (2)

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (2)

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Meas. Sci. Technol. (1)

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Microw. Opt. Technol. Lett. (1)

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Nat. Photonics (1)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Opt. Commun. (1)

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Opt. Eng. (1)

C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Phys. Rev. (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Rev. Sci. Instrum. (2)

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
[Crossref]

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Sensors (Basel) (1)

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Other (5)

A. Karpf and G. N. Rao, “Trace detection of no2 using cavity ring-down spectroscopy and a diode laser,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2013), paper JW2A.73.
[Crossref]

Z. Wang, M. Jiang, H. Xu, and R. Du, “New optical fiber micro-bend pressure sensors based on fiber-loop ringdown,” in Proccedings of International Conference on Information, Computing and Telecommunications, (Elsevier, 2012), pp. 4234–4238.
[Crossref]

H. Qiu, Y. Qiu, Z. Chen, B. Fu, X. Chen, and G. Li, “Multimode fiber loop ring down spectroscopy for pressure measurement,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2007), paper CThKK6.
[Crossref]

J. H. Kim, W. S. Kwon, H. Lee, K.-S. Kim, and S. Kim, “A novel method to acquire ring-down interferograms using a double-looped mach-zehnder interferometer,” in Conference on Lasers & Electro-Optics: Science and Innovations, (Optical Society of America, 2014), paper SM3E. 3.
[Crossref]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses: The Measurement of Ultrashort Laser Pulses (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic illustration of the acquisition method for multiple ring-down interferograms based on double- loops (OC: optical coupler, PD: photo-detector). (b) The two ring-down pulse trains from the sample and reference loops.
Fig. 2
Fig. 2 Ring-down pulse trains obtained using the double-looped Mach-Zehnder interferometer from (a) the sample arm and (b) the reference arm. Time-shifted ring-down pulse trains from the reference arm when the optical path difference (OPD) between the two arms is (c) Δτ, (d) 2Δτ and (e) 3Δτ.
Fig. 3
Fig. 3 The expected result consisting of ring-down interferograms, which can be obtained using two ring-down pulse trains.
Fig. 4
Fig. 4 Experimental confirmation of the interference phenomena observed using an oscilloscope with time delays of (a) 2Δτ and (b) 3Δτ as the time difference was adjusted from 0 to 6Δτ.
Fig. 5
Fig. 5 Ring-down pulse trains obtained using (a) a double-looped interferometer and (b) a single-looped interferometer.
Fig. 6
Fig. 6 Schematic diagram of the experimental setup for the acquisition of multiple ring-down interferograms using double loops (OC: optical coupler, FPC: fiber polarization controller, PD: photo-detector, PC: personal computer).
Fig. 7
Fig. 7 (a) Ring-down interferograms and (b) ring-down signal obtained from the envelope of the interferograms using the proposed system (rmse: root-mean-square error).
Fig. 8
Fig. 8 Ring-down signals and fitting lines of (a) the sample loop and (b) the reference loop obtained using the conventional method.
Fig. 9
Fig. 9 Schematic illustration of the acquisition method for multiple ring-down interferograms based on two mirror-type cavities (BS: beam splitter, M: Mirror, PD: photo -detector).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E m ( t m ) = 1 2 I m ( t m ) exp ( j [ ω 0 t m ϕ ( t m ) ] ) + c . c . ,
I m ( t m ) = I 0 ( t m ) exp ( m σ ) ,
E ( t ) = m = 0 p E ( t m × τ ) m ,
V ( τ ' ) I s + I r 2 Re E s ( t ) E r * ( t τ ' ) d t ,
E s ( t ) E r * ( t τ ' ) d t = m = 0 n I s 0 ( t m × τ s ) I r 0 * ( t m × τ r τ ' ) exp ( m ( σ s + σ r ) / 2 ) d t ,
m = l l s l r ,
l r d = 2 Δ l σ s + σ r ,
Γ s + Γ r = 10 log ( e ) × ( σ s + σ r ) = 4.34 ( 2 Δ l l r d ) ,
Γ s a m p l e = 4.34 [ 1 l r d 1 l r d 0 ] 2 Δ l ,

Metrics