Abstract

We put forward a double-looped Mach-Zehnder interferometer for acquiring continuous ring-down interferograms with two fiber-loop cavities with slightly different optical path lengths. Each group of pulses through the sample and reference loops creates a ring-down pulse train with equal time intervals in Vernier fashion, and interferes with each other to produce multiple ring-down interferograms successively by scanning of a delay line. The system requires a scanning range of only a few millimeters to obtain multiple ring-down interferograms. In a proof-of-concept demonstration, the intrinsic losses of two loops are estimated. The measured combined-loss of both loops is compared to the sum of the loop losses measured separately with a conventional fiber-loop ring-down system. The result obtained using the proposed system exhibits a difference of only 0.06 dB with that of the reference system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method

Yanjie Zhao, Jun Chang, Jiasheng Ni, Qingpu Wang, Tongyu Liu, Chang Wang, Pengpeng Wang, Guangping Lv, and Gangding Peng
Opt. Express 22(9) 11244-11253 (2014)

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Ai-Ping Luo, Zhi-Chao Luo, Wen-Cheng Xu, and Hu Cui
Opt. Express 18(6) 6056-6063 (2010)

Optical sensors using chaotic correlation fiber loop ring down

Lingzhen Yang, Jianjun Yang, Yi Yang, Zongwei Zhang, Juanfen Wang, Zhaoxia Zhang, Pingping Xue, Yongkang Gong, and Nigel Copner
Opt. Express 25(3) 2031-2037 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
    [Crossref]
  2. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
    [Crossref]
  3. A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [Crossref]
  4. A. Karpf and G. N. Rao, “Trace detection of no2 using cavity ring-down spectroscopy and a diode laser,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2013), paper JW2A.73.
    [Crossref]
  5. G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
    [Crossref]
  6. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
    [Crossref]
  7. Z. Wang, M. Jiang, H. Xu, and R. Du, “New optical fiber micro-bend pressure sensors based on fiber-loop ringdown,” in Proccedings of International Conference on Information, Computing and Telecommunications, (Elsevier, 2012), pp. 4234–4238.
    [Crossref]
  8. H. Qiu, Y. Qiu, Z. Chen, B. Fu, X. Chen, and G. Li, “Multimode fiber loop ring down spectroscopy for pressure measurement,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2007), paper CThKK6.
    [Crossref]
  9. C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: Pressure sensor,” Appl. Opt. 43(35), 6458–6464 (2004).
    [Crossref] [PubMed]
  10. C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
    [Crossref]
  11. T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
    [Crossref]
  12. C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
    [Crossref] [PubMed]
  13. C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
    [Crossref] [PubMed]
  14. H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
    [Crossref] [PubMed]
  15. H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
    [Crossref] [PubMed]
  16. H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
    [Crossref]
  17. W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
    [Crossref]
  18. J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
    [Crossref]
  19. Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
    [Crossref]
  20. L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
    [Crossref]
  21. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: Theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
    [Crossref] [PubMed]
  22. O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
    [Crossref]
  23. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  24. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  25. D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
    [Crossref] [PubMed]
  26. J. H. Kim, W. S. Kwon, H. Lee, K.-S. Kim, and S. Kim, “A novel method to acquire ring-down interferograms using a double-looped mach-zehnder interferometer,” in Conference on Lasers & Electro-Optics: Science and Innovations, (Optical Society of America, 2014), paper SM3E. 3.
    [Crossref]
  27. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses: The Measurement of Ultrashort Laser Pulses (Springer, 2000).
  28. S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (swnt-sa) with an er-doped all-fiber laser,” Opt. Express 20(12), 12966–12974 (2012).
    [Crossref] [PubMed]
  29. D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
    [Crossref]
  30. A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
    [Crossref]
  31. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
    [Crossref]
  32. N. Ming, H. Y. Yang, S. D. Xiong, and Y. M. Hu, “Investigation of polarization-induced fading in fiber-optic interferometers with polarizer-based polarization diversity receivers,” Appl. Opt. 45(11), 2387–2390 (2006).
    [Crossref] [PubMed]
  33. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]

2013 (1)

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

2012 (4)

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (swnt-sa) with an er-doped all-fiber laser,” Opt. Express 20(12), 12966–12974 (2012).
[Crossref] [PubMed]

2011 (2)

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

2010 (2)

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: Theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
[Crossref] [PubMed]

2009 (2)

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

2008 (1)

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

2007 (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

2006 (1)

2005 (1)

C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
[Crossref]

2004 (2)

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
[Crossref]

C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: Pressure sensor,” Appl. Opt. 43(35), 6458–6464 (2004).
[Crossref] [PubMed]

2003 (1)

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

2002 (2)

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref] [PubMed]

2001 (1)

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

1995 (1)

Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
[Crossref]

1993 (1)

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

1991 (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

1988 (2)

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

1982 (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

1927 (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Atherton, K.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Barnes, J. A.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Bescherer, K.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Bielecki, Z.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Boeck, R.

Brown, R. S.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Capmany, J.

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

Chandler, D. W.

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

Cheung, A. H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Chevalier, D.

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

Chrostowski, L.

Culshaw, B.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Dandridge, A.

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Deacon, D. A. G.

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Dürr, C. J.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Frigyes, I.

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

He, J.-J.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Herath, C.

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

Hiraoka, T.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Hori, M.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Houston, W. V.

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Hu, Y. M.

Huang, H. F.

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

Ito, M.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Ja, Y.

Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
[Crossref]

Jaeger, N. A.

Jin, L.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Kaya, M.

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Kim, J.

Kim, K.-S.

Kim, S.

Kozin, I.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Lehmann, K. K.

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

Li, M.

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Litman, J.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Loock, H. P.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Medrzycki, R.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Mikolajczyk, J.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Ming, N.

Moore, D. R.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

Moore, D. S.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
[Crossref]

Muriel, M. A.

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

Nishizawa, N.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Nowakowski, M.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Ohta, T.

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

OKeefe, A.

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Oleschuk, R. D.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Priest, R. G.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

Rouger, N.

Rutecka, B.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Ryu, S. Y.

Scherrer, S. T.

Schiller, S.

Schwelb, O.

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Stacewicz, T.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Stewart, G.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Stowe, D. W.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

Strecker, K. E.

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tong, Z.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

Tveten, A. B.

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Waechter, H.

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Wang, C.

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: Pressure sensor,” Appl. Opt. 43(35), 6458–6464 (2004).
[Crossref] [PubMed]

Wang, C. J.

C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
[Crossref]

Wojtas, J.

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Xiong, S. D.

Yang, H. Y.

Yu, H. B.

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Anal. Chem. (1)

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem. 81(21), 9048–9054 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Chem. Phys. Lett. (1)

H. F. Huang and K. K. Lehmann, “CW cavity ring-down spectroscopy (crds) with a semiconductor optical amplifier as intensity modulator,” Chem. Phys. Lett. 463(1–3), 246–250 (2008).
[Crossref]

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fiber optic michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[Crossref]

Fiber Integrated Opt. (2)

J. Capmany and M. A. Muriel, “Double-cavity fiber structures as all optical timing extraction circuits for gigabit networks,” Fiber Integrated Opt. 12(3), 247–255 (1993).
[Crossref]

Y. Ja, “Vernier operation of fiber ring and loop resonators,” Fiber Integrated Opt. 14(3), 225–244 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18(10), 1644–1647 (1982).
[Crossref]

J. Biomed. Opt. (2)

C. Wang, M. Kaya, and C. Wang, “Evanescent field-fiber loop ringdown glucose sensor,” J. Biomed. Opt. 17(3), 037004 (2012).
[Crossref] [PubMed]

C. Herath, C. Wang, M. Kaya, and D. Chevalier, “Fiber loop ringdown DNA and bacteria sensors,” J. Biomed. Opt. 16(5), 050501 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (2)

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H. P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117(23), 10444–10447 (2002).
[Crossref]

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136(15), 154201 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

A. D. Kersey, M. J. Marrone, A. Dandridge, and A. B. Tveten, “Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,” J. Lightwave Technol. 6(10), 1599–1609 (1988).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Hiraoka, T. Ohta, M. Ito, N. Nishizawa, and M. Hori, “Optical-fiber-type broadband cavity ring-down spectroscopy using wavelength-tunable ultrashort pulsed light,” Jpn. J. Appl. Phys. 52(4), 040201 (2013).
[Crossref]

Meas. Sci. Technol. (1)

G. Stewart, K. Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12(7), 843–849 (2001).
[Crossref]

Microw. Opt. Technol. Lett. (1)

O. Schwelb and I. Frigyes, “Vernier operation of series‐coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Nat. Photonics (1)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Opt. Commun. (1)

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Opt. Eng. (1)

C. J. Wang, “Fiber ringdown temperature sensors,” Opt. Eng. 44(3), 030503 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012).
[Crossref]

Phys. Rev. (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29(3), 478–484 (1927).
[Crossref]

Rev. Sci. Instrum. (2)

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75(8), 2499–2512 (2004).
[Crossref]

A. OKeefe and D. A. G. Deacon, “Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[Crossref]

Sensors (Basel) (1)

H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors (Basel) 10(3), 1716–1742 (2010).
[Crossref] [PubMed]

Other (5)

A. Karpf and G. N. Rao, “Trace detection of no2 using cavity ring-down spectroscopy and a diode laser,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2013), paper JW2A.73.
[Crossref]

Z. Wang, M. Jiang, H. Xu, and R. Du, “New optical fiber micro-bend pressure sensors based on fiber-loop ringdown,” in Proccedings of International Conference on Information, Computing and Telecommunications, (Elsevier, 2012), pp. 4234–4238.
[Crossref]

H. Qiu, Y. Qiu, Z. Chen, B. Fu, X. Chen, and G. Li, “Multimode fiber loop ring down spectroscopy for pressure measurement,” in Conference on Lasers & Electro-Optics, (Optical Society of America, 2007), paper CThKK6.
[Crossref]

J. H. Kim, W. S. Kwon, H. Lee, K.-S. Kim, and S. Kim, “A novel method to acquire ring-down interferograms using a double-looped mach-zehnder interferometer,” in Conference on Lasers & Electro-Optics: Science and Innovations, (Optical Society of America, 2014), paper SM3E. 3.
[Crossref]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses: The Measurement of Ultrashort Laser Pulses (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic illustration of the acquisition method for multiple ring-down interferograms based on double- loops (OC: optical coupler, PD: photo-detector). (b) The two ring-down pulse trains from the sample and reference loops.
Fig. 2
Fig. 2 Ring-down pulse trains obtained using the double-looped Mach-Zehnder interferometer from (a) the sample arm and (b) the reference arm. Time-shifted ring-down pulse trains from the reference arm when the optical path difference (OPD) between the two arms is (c) Δτ, (d) 2Δτ and (e) 3Δτ.
Fig. 3
Fig. 3 The expected result consisting of ring-down interferograms, which can be obtained using two ring-down pulse trains.
Fig. 4
Fig. 4 Experimental confirmation of the interference phenomena observed using an oscilloscope with time delays of (a) 2Δτ and (b) 3Δτ as the time difference was adjusted from 0 to 6Δτ.
Fig. 5
Fig. 5 Ring-down pulse trains obtained using (a) a double-looped interferometer and (b) a single-looped interferometer.
Fig. 6
Fig. 6 Schematic diagram of the experimental setup for the acquisition of multiple ring-down interferograms using double loops (OC: optical coupler, FPC: fiber polarization controller, PD: photo-detector, PC: personal computer).
Fig. 7
Fig. 7 (a) Ring-down interferograms and (b) ring-down signal obtained from the envelope of the interferograms using the proposed system (rmse: root-mean-square error).
Fig. 8
Fig. 8 Ring-down signals and fitting lines of (a) the sample loop and (b) the reference loop obtained using the conventional method.
Fig. 9
Fig. 9 Schematic illustration of the acquisition method for multiple ring-down interferograms based on two mirror-type cavities (BS: beam splitter, M: Mirror, PD: photo -detector).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E m ( t m ) = 1 2 I m ( t m ) exp ( j [ ω 0 t m ϕ ( t m ) ] ) + c . c . ,
I m ( t m ) = I 0 ( t m ) exp ( m σ ) ,
E ( t ) = m = 0 p E ( t m × τ ) m ,
V ( τ ' ) I s + I r 2 Re E s ( t ) E r * ( t τ ' ) d t ,
E s ( t ) E r * ( t τ ' ) d t = m = 0 n I s 0 ( t m × τ s ) I r 0 * ( t m × τ r τ ' ) exp ( m ( σ s + σ r ) / 2 ) d t ,
m = l l s l r ,
l r d = 2 Δ l σ s + σ r ,
Γ s + Γ r = 10 log ( e ) × ( σ s + σ r ) = 4.34 ( 2 Δ l l r d ) ,
Γ s a m p l e = 4.34 [ 1 l r d 1 l r d 0 ] 2 Δ l ,

Metrics