Abstract

Complementary encoder of stealth signal is proposed and demonstrated for coding, modulating and enhancing the privacy of optical stealth transmission. With complementary encoding, the stealth signal carried by amplified spontaneous emission (ASE) light keeps the same characteristic to ASE noise and can be concealed well under public channel. The experiment results demonstrate the feasibility of the scheme and show the stealth signal has the same impact on public channel in transmission performance, compared to the ASE noise.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical steganography based on amplified spontaneous emission noise

Ben Wu, Zhenxing Wang, Yue Tian, Mable P. Fok, Bhavin J. Shastri, Daniel R. Kanoff, and Paul R. Prucnal
Opt. Express 21(2) 2065-2071 (2013)

Experimental demonstration of optical stealth transmission over wavelength-division multiplexing network

Huatao Zhu, Rong Wang, Tao Pu, Tao Fang, Peng Xiang, Jilin Zheng, Yeteng Tang, and Dalei Chen
Appl. Opt. 55(23) 6394-6398 (2016)

Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering

Xuezhi Hong, Dawei Wang, Lei Xu, and Sailing He
Opt. Express 18(12) 12415-12420 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  2. N. Q. Li, W. Pan, L. S. Yan, L. Bin, M. F. Xu, Y. L. Tang, N. Jiang, S. Y. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29(1), 101–108 (2012).
    [Crossref]
  3. M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
    [Crossref] [PubMed]
  4. L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
    [Crossref]
  5. K. Kravtsov, B. Wu, I. Glesk, P. R. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” IEEE/LEOS Annual Meet. 480–481 (2007).
    [Crossref]
  6. M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
    [Crossref]
  7. Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
    [Crossref]
  8. Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
    [Crossref]
  9. B. Wu, Z. X. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
    [Crossref] [PubMed]
  10. B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22(1), 954–961 (2014).
    [Crossref] [PubMed]
  11. T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 23(2), 655–670 (2005).
    [Crossref]

2014 (1)

2013 (2)

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

B. Wu, Z. X. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[Crossref]

2010 (1)

Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
[Crossref]

2009 (1)

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[Crossref]

2005 (2)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 23(2), 655–670 (2005).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Bin, L.

Chang, M. P.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Dong, Y.

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Fok, M. P.

B. Wu, Z. X. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[Crossref]

Frost, N. A.

Gao, Z.

Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gisin, N.

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Hu, W. S.

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Jiang, N.

Kanoff, D. R.

Kataoka, N.

Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Li, N. Q.

Li, Z. X.

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Lim, C. C. W.

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Pan, W.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Prucnal, P. R.

B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22(1), 954–961 (2014).
[Crossref] [PubMed]

B. Wu, Z. X. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[Crossref]

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[Crossref]

Renner, R.

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Shake, T. H.

Shastri, B. J.

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tang, Y. L.

Tian, Y.

Tomamichel, M.

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Wada, N.

Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
[Crossref]

Wang, X.

Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
[Crossref]

Wang, Z.

Wang, Z. X.

Wu, B.

Xiang, S. Y.

Xu, M. F.

Yan, L. S.

Yi, L. L.

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Zhang, Q.

Zhang, T.

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Zhang, Y.

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Electron. Lett. (1)

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[Crossref]

Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Stealth transmission of time domain spectral phase encoded OCDMA signal over public WDM network,” IEEE Photon. Technol. Lett. 22(13), 993–995 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

L. L. Yi, T. Zhang, Z. X. Li, Y. Zhang, Y. Dong, and W. S. Hu, “Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber,” Laser Phys. Lett. 10(4), 045102 (2013).
[Crossref]

Nat. Commun. (1)

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Other (1)

K. Kravtsov, B. Wu, I. Glesk, P. R. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” IEEE/LEOS Annual Meet. 480–481 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Setup of the complementary encoder. WSS: wavelength selection switch; IM: intensity modulator; OTDL: optical tunable delay line; VOA: variable optical attenuator.
Fig. 2
Fig. 2 (a) The spectrum of the combined signal. The waveform diagram (b) encoded signal; (c) complementary encoded signal; (d) the original ASE signal; (e) combined signal. (f) The waveform diagram of decoded signal.
Fig. 3
Fig. 3 The schematic diagram of the optical stealth transmission system. EDFA: Erbium-doped fiber amplifier, WSS: wavelength selection switch, AASE: additional amplified spontaneous emission.
Fig. 4
Fig. 4 Waveforms of the public channel without (a) and with (b) stealth channel. (c) The spectrum of the public channel.
Fig. 5
Fig. 5 BER results for (a) stealth channel and (b) public channel.
Fig. 6
Fig. 6 The probability of R1.
Fig. 7
Fig. 7 Waveform (a)-(c) and the BER results (d) in the eavesdropping.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( m ) = ( 48 m ) ( 48 48 m ) / ( 96 48 ) .

Metrics