Abstract

We experimentally demonstrate a convenient technique for in situ fine group velocity dispersion (GVD) tailoring in optical microfibers via dielectric nanocoatings. This was elaborated by successively depositing poly-dimethylsiloxane (PDMS) nanocoatings around a 1.2 μm-diameter optical microfiber with a modified dip-coating method. In situ dispersion measurements showed that the GVD was tailored by 55 ps/nm•km at 1580 nm, and the zero-dispersion wavelength (ZDW) was red shifted by 30 nm. Numerical simulations showed that GVD tailoring in optical microfibers could bring signal (idler) tuning in spontaneous four-wave mixing (FWM) and spectral bandwidth expanding in supercontinuum (SC) generation, implying that this in situ fine GVD tailoring technique would offer optical microfibers with many new opportunities for applications in nonlinear optics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailored anomalous group-velocity dispersion in silicon channel waveguides

Amy C. Turner, Christina Manolatou, Bradley S. Schmidt, Michal Lipson, Mark A. Foster, Jay E. Sharping, and Alexander L. Gaeta
Opt. Express 14(10) 4357-4362 (2006)

Giant all-optical tunable group velocity dispersion in an optical fiber

Yunhui Zhu, Joel A. Greenberg, Nor Ain Husein, and Daniel J. Gauthier
Opt. Express 22(12) 14382-14391 (2014)

Phase matched parametric amplification via four-wave mixing in optical microfibers

Muhammad I. M. Abdul Khudus, Francesco De Lucia, Costantino Corbari, Timothy Lee, Peter Horak, Pier Sazio, and Gilberto Brambilla
Opt. Lett. 41(4) 761-764 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  3. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-843 .
    [Crossref] [PubMed]
  4. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
    [Crossref]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [Crossref] [PubMed]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  7. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1685 .
    [Crossref] [PubMed]
  8. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357 .
    [Crossref] [PubMed]
  9. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
    [Crossref]
  10. E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
    [Crossref] [PubMed]
  11. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref] [PubMed]
  12. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25(11), 790–792 (2000).
    [Crossref] [PubMed]
  13. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
    [Crossref]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  15. M. L. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4445 .
    [Crossref] [PubMed]
  16. L. Cui, X. Li, C. Guo, Y. H. Li, Z. Y. Xu, L. J. Wang, and W. Fang, “Generation of correlated photon pairs in micro/nano-fibers,” Opt. Lett. 38(23), 5063–5066 (2013).
    [Crossref] [PubMed]
  17. Y. H. Li, Y. Y. Zhao, and L. J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Opt. Lett. 37(16), 3441–3443 (2012).
    [Crossref] [PubMed]
  18. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [Crossref] [PubMed]
  19. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
    [Crossref] [PubMed]
  20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [Crossref] [PubMed]
  21. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7572 .
    [Crossref] [PubMed]
  22. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
    [Crossref] [PubMed]
  23. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [Crossref]
  24. G. Brambilla, F. Xu, P. Horak, Y. Jung, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
    [Crossref]
  25. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3521 .
    [Crossref] [PubMed]
  26. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4331 .
    [Crossref] [PubMed]
  27. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-6993 .
    [Crossref] [PubMed]
  28. W. Guo, J. L. Kou, F. Xu, and Y. Q. Lu, “Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction,” Opt. Express 19(16), 15229–15235 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15229 .
    [Crossref] [PubMed]
  29. Z. Y. Xu, Y. H. Li, and L. J. Wang, “Versatile technique to functionalize optical microfibers via a modified sol-gel dip-coating method,” Opt. Lett. 39(1), 34–36 (2014).
    [Crossref] [PubMed]
  30. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [Crossref]
  31. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11608 .
    [Crossref] [PubMed]
  32. Q. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Opt. 41(22), 4467–4470 (2002).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (4)

2011 (2)

2010 (2)

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

2009 (1)

2008 (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

2007 (1)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[Crossref] [PubMed]

2006 (5)

2005 (4)

2004 (1)

2003 (3)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-843 .
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

2000 (2)

1995 (1)

Aggarwal, I. D.

Akhmediev, N.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[Crossref] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7572 .
[Crossref] [PubMed]

Andrés, P.

Beausoleil, R. G.

Belgiorno, F.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Bethge, J.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Birks, T. A.

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Brambilla, G.

Broderick, N. G.

Chériaux, G.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Colman, P.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Combrié, S.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Cordeiro, C. M. B.

Cui, L.

De Rossi, A.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Dekker, S. A.

Dias, F.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Dudley, J. M.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dulashko, Y.

Eggleton, B.

Eggleton, B. J.

Faccio, D.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Fang, W.

Fatome, J.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Feng, X.

Ferrando, A.

Finot, C.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Foster, M. A.

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[Crossref] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7572 .
[Crossref] [PubMed]

Gaeta, A. L.

Genty, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Guo, C.

Guo, W.

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Hale, A.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hasegawa, T.

Hayes, J. R.

Horak, P.

Hudson, D. D.

Husko, C.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Jackson, S. D.

Joffre, M.

Judge, A. C.

Jung, Y.

Kehr, S. C.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Kibler, B.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Kim, D. Y.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Knox, W. H.

König, F.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Koshiba, M.

Kou, J. L.

Koukharenko, E.

Kuklewicz, C. E.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Lee, J. Y.

Leonhardt, U.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Lepetit, L.

Li, E.

Li, X.

Li, Y. H.

Lin, Q.

Lipson, M.

Liu, X.

Lou, J.

Lu, Y. Q.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Mägi, E. C.

Manolatou, C.

McLenaghan, J.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Millot, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Miret, J. J.

Murugan, G. S.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[Crossref] [PubMed]

Poletti, F.

Price, J. H.

Rarity, J.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[Crossref] [PubMed]

Richardson, D. J.

Rohr, S.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Rubino, E.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Russell, P.

Russell, P. St. J.

Sagnes, I.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Saitoh, K.

Sanghera, J. S.

Sasaoka, E.

Schmidt, B. S.

Sessions, N. P.

Sharping, J. E.

Shaw, L. B.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Silvestre, E.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Steinmeyer, G.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Sumetsky, M.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Tong, L.

Townsend, D.

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

Tse, M. L.

Turner, A. C.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wadsworth, W.

Wadsworth, W. J.

Wang, L. J.

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Wilkinson, J. S.

Willner, A. E.

Windeler, R. S.

Wong, C. W.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Xu, C.

Xu, F.

Xu, Z. Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yan, M. F.

Yan, Y.

Ye, Q.

Ye, Z.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yue, Y.

Zhang, L.

Zhao, Y. Y.

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Nat. Phys. (1)

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Opt. Express (10)

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11608 .
[Crossref] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7572 .
[Crossref] [PubMed]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3521 .
[Crossref] [PubMed]

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4331 .
[Crossref] [PubMed]

J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-6993 .
[Crossref] [PubMed]

W. Guo, J. L. Kou, F. Xu, and Y. Q. Lu, “Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction,” Opt. Express 19(16), 15229–15235 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15229 .
[Crossref] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-843 .
[Crossref] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1685 .
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357 .
[Crossref] [PubMed]

M. L. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4445 .
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett. (3)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[Crossref] [PubMed]

E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, “Negative-frequency resonant radiation,” Phys. Rev. Lett. 108(25), 253901 (2012).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic for the coating process via a modified dip-coating method. The as-fabricated microfiber is connected with untapered fibers through taper sections. The PDMS: toluene solution droplet suspended from the syringe scans along the microfiber to deposit nanocoatings. The oxygen-butane flame (not shown here), used in the microfiber drawing process, is employed to accelerate the solvent evaporation and the cure of PDMS. The inset shows the cross section of the coated microfiber.
Fig. 2
Fig. 2 (a) The white-light interferometry setup for microfiber GVD measurements. An ASE source in the C band is employed to illuminate the balanced MI, in which a 3 dB FC is used as the beam splitter and combiner. The reference arm is free space with a movable broadband mirror and the measuring arm was the MFUT terminated with a fixed broadband mirror. (b) The recorded interference spectrum and spectrum of each arm. (c) The relative phase delay extracted from the interference spectrum via phase retrieval methods [26].
Fig. 3
Fig. 3 (a) The measured GDD of the MFUT (including a 10 cm-long microfiber, two 2 cm-long taper sections and a 20 cm-long untapered fiber). The error bars gives a standard deviation of less than 1%. (b) The measured (solid lines) and the simulated (scatters) GVDs of the bare and coated microfiber. In the simulation, the refractive index of PDMS assumed to be 1.406 and its material dispersion is ignored. Note that the GDD contributions from the taper sections and the untapered fibers should be subtracted from (a) in the calculations of GVD profiles.
Fig. 4
Fig. 4 The phase matching curves of a bare and coated optical microfiber. The diameter of the bare microfiber is assumed to be 1.2 μm in the calculations.
Fig. 5
Fig. 5 The SC generated in the bare and coated optical microfiber. The bare microfiber diameter is 1.2 μm and the length is 10 cm. We chose typical parameters of a femtosecond fiber laser for the simulation, i.e., wavelength: 1535 nm, pulse duration: 250 fs, peak power: 2000 W. The nonlinear coefficient is calculated to be 0.074 W−1m−1 and the nonlinear effects of PDMS coatings are ignored.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = I 1 ( ω ) + I 2 ( ω ) + 2 I 1 ( ω ) I 2 ( ω ) cos ( φ ( ω ) ) .
φ ( ω ) = β f ( ω ) L β a ( ω ) d .
G D D = β 2 L = d 2 β f ( ω ) d ω 2 L = d 2 φ ( ω ) d ω 2
G V D = 2 π c λ 2 β 2 .

Metrics