Abstract

Advanced LIGO (aLIGO) requires multiple frequency sidebands to disentangle all of the main interferometer’s length signals. This paper presents the results of a risk reduction experiment to produce two sets of frequency sidebands in parallel, avoiding mixed ‘sidebands on sidebands’. Two phase modulation frequencies are applied to separate Electro-Optic Modulators (EOMs), with one EOM in each of the two arms of a Mach-Zehnder interferometer. In this system the Mach-Zehnder’s arm lengths are stabilized to reduce relative intensity noise in the recombined carrier beam by feeding a corrective control signal back to the Rubidium Titanyl Phosphate (RTP) EOM crystals to drive the optical path length difference to zero. This setup’s use of the RTP crystals as length actuators provides enough bandwidth in the feedback to meet arm length stability requirements for aLIGO.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Alignment of an interferometric gravitational wave detector

Peter Fritschel, Nergis Mavalvala, David Shoemaker, Daniel Sigg, Michael Zucker, and Gabriela González
Appl. Opt. 37(28) 6734-6747 (1998)

Arm cavity resonant sideband control for laser interferometric gravitational wave detectors

D. E. McClelland, J. B. Camp, J. Mason, W. Kells, and S. E. Whitcomb
Opt. Lett. 24(15) 1014-1016 (1999)

Radiation pressure and stability of interferometric gravitational-wave detectors

Vijay Chickarmane, Sanjeev V. Dhurandhar, Roland Barillet, Patrice Hello, and Jean-Yves Vinet
Appl. Opt. 37(15) 3236-3245 (1998)

References

  • View by:
  • |
  • |
  • |

  1. B. Abbot and the LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009).
    [Crossref]
  2. G. M. Harry and for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
    [Crossref]
  3. B. Abbot and the LIGO Scientific Collaboration, “First upper limits from LIGO on gravitational wave bursts,” Phys. Rev. D 69, 102001 (2004).
    [Crossref]
  4. B. Abbot and the LIGO Scientific Collaboration and the Virgo Collaboration, “An upper limit on the stochastic gravitational-wave background of cosmological origin,” Nature 460, 990–994 (2009).
    [Crossref]
  5. J. Abadie and the LIGO Scientific Collaboration and the Virgo Collaboration, “Directional limits on persistent gravitational waves using LIGO S5 science data,” Phys. Rev. Lett. 107, 271102 (2011).
    [Crossref]
  6. J. Aasi and the LIGO Scientific Collaboration, “Prospects for localization of gravitational wave transients by the advanced LIGO and advanced virgo observatories,” Living Rev. Relat., in press. (arXiv:1304.0670 [gr-qc], LIGO-P1200087).
  7. H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
    [Crossref]
  8. E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am J Phys 69, 79–87 (2001).
    [Crossref]
  9. K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Length sensing in advanced LIGO,” Appl. Opt. 42, 1244–1256 (2003).
    [Crossref] [PubMed]
  10. R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.
  11. B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
    [Crossref]
  12. O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
    [Crossref]
  13. M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.
  14. S. Wise, “Sensitivity enhancement in future interferometric gravitational wave detectors,” Ph.D. thesis, The University of Florida (2006).
  15. S. Kawamura and O. Miyakawa, “Effect of mach zehnder residual displacement noise on the 40m detuned rse interferometer,” (2004). LIGO-T040166.
  16. K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
    [Crossref] [PubMed]
  17. New Focus 1611 Photodetector (2011). http://assets.newport.com/webDocuments-EN/images/15178.pdf .
  18. Raicol RTP Specifications (2006). http://www.optoscience.com/maker/raicol/pdf/catalog%20raicol_screen.pdf .
  19. J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).
  20. O. Gobert, N. Fedorov, G. Mennerat, D. Lupinski, D. Guillaumet, M. Perdrix, A. Bourgeade, and M. Comte, “Wavelength dispersion measurement of electro-optic coefficients in the range of 520 to 930 nm in rubidium titanyl phosphate using spectral interferometry,” Appl. Opt. 51, 594–599 (2012).
    [Crossref] [PubMed]
  21. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
    [Crossref]

2012 (2)

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

O. Gobert, N. Fedorov, G. Mennerat, D. Lupinski, D. Guillaumet, M. Perdrix, A. Bourgeade, and M. Comte, “Wavelength dispersion measurement of electro-optic coefficients in the range of 520 to 930 nm in rubidium titanyl phosphate using spectral interferometry,” Appl. Opt. 51, 594–599 (2012).
[Crossref] [PubMed]

2011 (1)

J. Abadie and the LIGO Scientific Collaboration and the Virgo Collaboration, “Directional limits on persistent gravitational waves using LIGO S5 science data,” Phys. Rev. Lett. 107, 271102 (2011).
[Crossref]

2010 (1)

G. M. Harry and for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[Crossref]

2009 (2)

B. Abbot and the LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009).
[Crossref]

B. Abbot and the LIGO Scientific Collaboration and the Virgo Collaboration, “An upper limit on the stochastic gravitational-wave background of cosmological origin,” Nature 460, 990–994 (2009).
[Crossref]

2007 (1)

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

2006 (2)

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[Crossref]

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

2004 (2)

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

B. Abbot and the LIGO Scientific Collaboration, “First upper limits from LIGO on gravitational wave bursts,” Phys. Rev. D 69, 102001 (2004).
[Crossref]

2003 (1)

2001 (1)

E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am J Phys 69, 79–87 (2001).
[Crossref]

Aasi, J.

J. Aasi and the LIGO Scientific Collaboration, “Prospects for localization of gravitational wave transients by the advanced LIGO and advanced virgo observatories,” Living Rev. Relat., in press. (arXiv:1304.0670 [gr-qc], LIGO-P1200087).

Abadie, J.

J. Abadie and the LIGO Scientific Collaboration and the Virgo Collaboration, “Directional limits on persistent gravitational waves using LIGO S5 science data,” Phys. Rev. Lett. 107, 271102 (2011).
[Crossref]

Abbot, B.

B. Abbot and the LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009).
[Crossref]

B. Abbot and the LIGO Scientific Collaboration and the Virgo Collaboration, “An upper limit on the stochastic gravitational-wave background of cosmological origin,” Nature 460, 990–994 (2009).
[Crossref]

B. Abbot and the LIGO Scientific Collaboration, “First upper limits from LIGO on gravitational wave bursts,” Phys. Rev. D 69, 102001 (2004).
[Crossref]

Abbott, B.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Abbott, R.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Adhikari, R.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Aguiló, M.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Arain, M.

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Arain, M. A.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Ballmer, S.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Barr, B. W.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

Barsotti, L.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Black, E. D.

E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am J Phys 69, 79–87 (2001).
[Crossref]

Bork, R.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Boulanger, B.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Bourgeade, A.

Carvajal, J. J.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Chen, Y.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[Crossref]

Comte, M.

Danzmann, K.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Delker, T.

Díaz, F.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Dooley, K. L.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Evans, M.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Fedorov, N.

Feldbaum, D.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Freise, A.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Fritschel, P.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Frolov, V.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Frolov, V. V.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Gobert, O.

Goggin, L.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Gray, M. B.

Grote, H.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Guillaumet, D.

Harry, G. M.

G. M. Harry and for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[Crossref]

Heefner, J.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Heintze, M.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Heinzel, G.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Hoak, D.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Hough, J.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Ivanov, A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Kawamura, S.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[Crossref]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

S. Kawamura and O. Miyakawa, “Effect of mach zehnder residual displacement noise on the 40m detuned rse interferometer,” (2004). LIGO-T040166.

Kawazoe, F.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Khazanov, E. A.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Lck, H.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Lucianetti, A.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Lupinski, D.

Malec, M.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Martin, R.

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Martin, R. M.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Mason, J. E.

McClelland, D. E.

Mennerat, G.

Mio, N.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[Crossref]

Miyakawa, O.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

S. Kawamura and O. Miyakawa, “Effect of mach zehnder residual displacement noise on the 40m detuned rse interferometer,” (2004). LIGO-T040166.

Mow-Lowry, C.

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Length sensing in advanced LIGO,” Appl. Opt. 42, 1244–1256 (2003).
[Crossref] [PubMed]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Mueller, G.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Length sensing in advanced LIGO,” Appl. Opt. 42, 1244–1256 (2003).
[Crossref] [PubMed]

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Ourjoumtsev, A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Palashov, O.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Peña, A.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Perdrix, M.

Quetschke, V.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Reitze, D.

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Reitze, D. H.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Length sensing in advanced LIGO,” Appl. Opt. 42, 1244–1256 (2003).
[Crossref] [PubMed]

Sakata, S.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Savage, R. L.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Segonds, P.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Shaddock, D. A.

Slagmolen, B.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Smith, M.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Somiya, K.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[Crossref]

Strain, K. A.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Length sensing in advanced LIGO,” Appl. Opt. 42, 1244–1256 (2003).
[Crossref] [PubMed]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Tanner, D.

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Tanner, D. B.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Length sensing in advanced LIGO,” Appl. Opt. 42, 1244–1256 (2003).
[Crossref] [PubMed]

Taylor, R.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Ugolini, D.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Vass, S.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Waldman, S.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

Ward, R.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Weinstein, A.

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

Weinstein, A. J.

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

Willems, P. A.

Williams, L. F.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Willke, B.

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

Wise, S.

S. Wise, “Sensitivity enhancement in future interferometric gravitational wave detectors,” Ph.D. thesis, The University of Florida (2006).

Wu, W.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

Zaccaro, J.

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Am J Phys (1)

E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am J Phys 69, 79–87 (2001).
[Crossref]

Appl. Opt. (2)

Class. Quantum Grav. (3)

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lck, K. A. Strain, J. Hough, and K. Danzmann, “Dual recycling for GEO 600,” Class. Quantum Grav. 21, S473 (2004).
[Crossref]

G. M. Harry and for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[Crossref]

B. W. Barr, O. Miyakawa, S. Kawamura, A. J. Weinstein, R. Ward, S. Vass, and K. A. Strain, “Control sideband generation for dual-recycled laser interferometric gravitational wave detectors,” Class. Quantum Grav. 23, 5661 (2006).
[Crossref]

J. Phys.: Condens. Matter (1)

J. J. Carvajal, P. Segonds, A. Peña, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguiló, “Structural and optical properties of RbTiOPO4 : Nb crystals,” J. Phys.: Condens. Matter 19, 116214 (2007).

Nature (1)

B. Abbot and the LIGO Scientific Collaboration and the Virgo Collaboration, “An upper limit on the stochastic gravitational-wave background of cosmological origin,” Nature 460, 990–994 (2009).
[Crossref]

Phys. Rev. D (2)

B. Abbot and the LIGO Scientific Collaboration, “First upper limits from LIGO on gravitational wave bursts,” Phys. Rev. D 69, 102001 (2004).
[Crossref]

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Abadie and the LIGO Scientific Collaboration and the Virgo Collaboration, “Directional limits on persistent gravitational waves using LIGO S5 science data,” Phys. Rev. Lett. 107, 271102 (2011).
[Crossref]

Rep. Prog. Phys. (1)

B. Abbot and the LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Other (8)

New Focus 1611 Photodetector (2011). http://assets.newport.com/webDocuments-EN/images/15178.pdf .

Raicol RTP Specifications (2006). http://www.optoscience.com/maker/raicol/pdf/catalog%20raicol_screen.pdf .

O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, and A. Weinstein, “Sensing and control of the advanced LIGO optical configuration,” SPIE 5500, Gravitational Wave and Partical Astrophysics pp. 92–104 (2004).
[Crossref]

M. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, and W. Wu, “AdvLIGO phase modulator assembly document,” (2009). LIGO-T0900475-v2.

S. Wise, “Sensitivity enhancement in future interferometric gravitational wave detectors,” Ph.D. thesis, The University of Florida (2006).

S. Kawamura and O. Miyakawa, “Effect of mach zehnder residual displacement noise on the 40m detuned rse interferometer,” (2004). LIGO-T040166.

R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “Advanced LIGO length sensing and control final design,” (2010). LIGO-T1000298-T.

J. Aasi and the LIGO Scientific Collaboration, “Prospects for localization of gravitational wave transients by the advanced LIGO and advanced virgo observatories,” Living Rev. Relat., in press. (arXiv:1304.0670 [gr-qc], LIGO-P1200087).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The aLIGO interferometer is composed of the Fabry-Perot arm cavities as well as the power-recycling and the signal-recycling cavity. Three of the photodetector output ports are labeled: The reflected light pickoff (REFL), the power recycling cavity pickoff (POP), and the interferometer’s anti-symetric port (AS). The carrier (red) and two sidebands (blue and green) are designed to be resonant in different parts of the interferometer.
Fig. 2
Fig. 2 Illustrations of the spectra of light produced by three different modulation schemes.
Fig. 3
Fig. 3 The Mach-Zehnder experimental setup.
Fig. 4
Fig. 4 A photograph of the Mach-Zehnder parallel phase modulator.
Fig. 5
Fig. 5 Differential arm noise of the free-running Mach-Zehnder measured by demodulating the bright and dark ports (purple and green) at 48.575 and 9.646 MHz respectively.
Fig. 6
Fig. 6 The locations of the power stabilization pickoffs. The RF modulation is inside the second feedback loop.
Fig. 7
Fig. 7 The Mach-Zehnder’s measured closed-loop differential arm noise (In-loop (Blue) and Out-of-loop (Red)). The calculated level of suppressed noise (Cyan) is based on the feedback and the free-running noise (Magenta). The requirement for aLIGO, based on the equivalent RIN produced from MZ differential arm motion, is shown in Black.

Tables (1)

Tables Icon

Table 1 Summary of themajor DOFs in the aLIGO interferometer along with a previous demodulation scheme for error signal formation. Lengths and ports are defined in Fig. 1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E mod 1 = E 0 e i [ ω 0 t + m 1 sin ( Ω 1 t ) ] = E 0 e i ω 0 t = + J ( m 1 ) e i ( Ω 1 t ) E 0 [ J 0 ( m 1 ) e i ω 0 t + J 1 ( m 1 ) e i ( ω 0 + Ω 1 ) t J 1 ( m 1 ) e i ( ω 0 Ω 1 ) t ]
E mod 2 = E mod 1 e i m 2 sin Ω 2 t E 0 [ J 0 ( m 1 ) J 0 ( m 2 ) e i ω 0 t + J 0 ( m 1 ) J 1 ( m 2 ) e i ( ω 0 + Ω 2 ) t J 0 ( m 1 ) J 1 ( m 2 ) e i ( ω 0 Ω 2 ) t + J 1 ( m 1 ) J 0 ( m 2 ) e i ( ω 0 + Ω 1 ) t J 1 ( m 1 ) J 0 ( m 2 ) e i ( ω 0 Ω 1 ) t + J 1 ( m 1 ) J 1 ( m 2 ) e i ( ω 0 + Ω 1 + Ω 2 ) t J 1 ( m 1 ) J 1 ( m 2 ) e i ( ω 0 + Ω 1 Ω 2 t ) J 1 ( m 1 ) J 1 ( m 2 ) e i ( ω 0 Ω 1 + Ω 2 ) t + J 1 ( m 1 ) J 1 ( m 2 ) e i ( ω 0 Ω 1 Ω 2 ) t ]
E x , y = E 0 2 e i ( ω 0 t + m j sin Ω j t + ϕ L j ) , j = 1 , 2
E BP = E x + E y E 0 2 e i ϕ L 1 [ J 0 ( m 1 ) e i ω 0 t + J 1 ( m 1 ) e i ( ω 0 + Ω 1 ) t J 1 ( m 1 ) e i ( ω 0 Ω 1 ) t ] + E 0 2 e i ϕ L 2 [ J 0 ( m 2 ) e i ω 0 t + J 1 ( m 2 ) e i ( ω 0 + Ω 2 ) t J 1 ( m 2 ) e i ( ω 0 Ω 2 ) t ]
V DP = G TI × R PD × | E DP | 2 G TI R PD × | E 0 2 e i ( ϕ L 1 + π ) [ J 0 ( m 1 ) e i ω 0 t + J 1 ( m 1 ) e i ( ω 0 + Ω 1 t ) J 1 ( m 1 ) e i ( ω 0 Ω 1 ) t ] + E 0 2 e i ϕ L 2 [ J 0 ( m 2 ) e i ω 0 t + J 1 ( m 2 ) e i ( ω 0 + Ω 2 t ) J 1 ( m 2 ) e i ( ω 0 Ω 2 ) t ] | 2
V DP = G TI R PD P 0 4 { 2 + J 0 ( m 1 ) [ e i ( ϕ L 1 ϕ L 2 + π ) + e i ( ϕ L 1 ϕ L 2 + π ) ] + 2 J 1 ( m 1 ) sin ( Ω 1 t ) [ e i ( ϕ L 1 ϕ L 2 + π ) e i ( ϕ L 1 ϕ L 2 + π ) ] } V DP = G TI R PD P 0 2 { 1 + J 0 ( m 1 ) cos ( Δ ϕ + π ) 2 J 1 ( m 1 ) sin ( Ω 1 t ) sin ( Δ ϕ ) }
V err = P 0 2 G TI R PD J 1 ( m 1 ) cos ( ϕ EO ) sin ( Δ ϕ )
V π = λ d n 0 z 3 r 33 L
P ( Δ L ) = P 0 2 [ 1 + cos ( 2 π λ Δ L ) ]
RIN = 2 π 2 λ 2 L RMS δ L

Metrics