Abstract

We demonstrate a metamaterials-based THz broadband polarization rotator which is able to rotate linearly polarized THz wave by 90 degree within a wide frequency range (0.44 to 0.76 THz). The device is characterized both theoretically and experimentally. Analyses show that the multiple-plasmon-resonance is the key for the broadband feature and the phase-shift difference of the two reflection components is critical for the polarization conversion. The approach demonstrated in the work can be useful for constructing building blocks for THz polarimetry.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband linear-to-circular polarization converter based on phosphorene metamaterial

Yannan Jiang, Haipeng Zhao, Lei Wang, Jiao Wang, Weiping Cao, and Yiying Wang
Opt. Mater. Express 9(5) 2088-2097 (2019)

Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator

Linbo Zhang, Peiheng Zhou, Haipeng Lu, Li Zhang, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 6(4) 1393-1404 (2016)

Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves

Yonghzi Cheng, Hui Luo, Fu Chen, Xuesong Mao, and Rongzhou Gong
OSA Continuum 2(8) 2391-2400 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
    [Crossref]
  2. K. Liu, M. Brown, and R. Saykally, “Terahertz laser vibration-rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
    [Crossref]
  3. F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
    [Crossref]
  4. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
    [Crossref]
  5. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
    [Crossref] [PubMed]
  6. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  7. D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
    [Crossref]
  8. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  9. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  10. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  11. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  12. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [Crossref] [PubMed]
  13. J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
    [Crossref]
  14. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [Crossref] [PubMed]
  15. H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
    [Crossref] [PubMed]
  16. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  17. T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
    [Crossref]
  18. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
    [Crossref]
  19. P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
    [Crossref] [PubMed]
  20. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [Crossref] [PubMed]
  21. H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
    [Crossref] [PubMed]
  22. P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
    [Crossref]
  23. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [Crossref] [PubMed]
  24. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
    [Crossref]
  25. M. Mazur and W. Zieniutycz, “Multi-layer meander line polarizer for Ku band,” in Microwaves, Radar and Wireless Communications.2000. MIKON-2000. 13th International Conference on, (IEEE, 2000), 78–81.
    [Crossref]
  26. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
    [Crossref] [PubMed]
  27. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
    [Crossref]
  28. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
    [Crossref] [PubMed]
  29. F. Fang and Y. Cheng, “Dual-Band Terahertz Chiral Metamaterial with Giant Optical Activity and Negative Refractive Index Based on Cross-Wire Strucure,” Prog. Electromag. Res. M 31, 59–69 (2013).
    [Crossref]
  30. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
    [Crossref]
  31. D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26(2-3), 251–263 (2012).
    [Crossref]
  32. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
    [Crossref] [PubMed]
  33. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007).
    [Crossref] [PubMed]
  34. C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
    [Crossref]
  35. A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
    [Crossref]
  36. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]

2013 (4)

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

F. Fang and Y. Cheng, “Dual-Band Terahertz Chiral Metamaterial with Giant Optical Activity and Negative Refractive Index Based on Cross-Wire Strucure,” Prog. Electromag. Res. M 31, 59–69 (2013).
[Crossref]

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

2012 (4)

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26(2-3), 251–263 (2012).
[Crossref]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[Crossref] [PubMed]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
[Crossref] [PubMed]

2011 (2)

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

2008 (2)

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2007 (4)

2006 (1)

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

2005 (1)

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2003 (1)

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

2002 (3)

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

2000 (2)

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

1999 (1)

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

1997 (1)

K. Liu, M. Brown, and R. Saykally, “Terahertz laser vibration-rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

1995 (2)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[Crossref]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
[Crossref] [PubMed]

1978 (1)

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
[Crossref]

Ahrens, V.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Averitt, R. D.

Azad, A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Azad, A. K.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Baraniuk, R.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Beaky, M.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Bian, H.

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

Bolivar, P.

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Bosserhoff, A.

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Brener, I.

Brown, M.

K. Liu, M. Brown, and R. Saykally, “Terahertz laser vibration-rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Brucherseifer, M.

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Büttner, R.

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Casse, B. D.

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Celik, M. A.

Chan, C.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, C.-Y.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Chen, H.

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

Chen, H.-T.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Cheng, Y.

F. Fang and Y. Cheng, “Dual-Band Terahertz Chiral Metamaterial with Giant Optical Activity and Negative Refractive Index Based on Cross-Wire Strucure,” Prog. Electromag. Res. M 31, 59–69 (2013).
[Crossref]

Cheville, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Chowdhury, D. R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Cui, Y.

Cundiff, S. T.

Dabrowski, R.

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Dolling, G.

Dong, J.-W.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Esquinazi, P.

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

Fan, K.

Fang, F.

F. Fang and Y. Cheng, “Dual-Band Terahertz Chiral Metamaterial with Giant Optical Activity and Negative Refractive Index Based on Cross-Wire Strucure,” Prog. Electromag. Res. M 31, 59–69 (2013).
[Crossref]

Feng, Q.

Fischer, B. M.

Frenking, G.

Gendriesch, R.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Guo, X.

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

Gupta, M.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Han, J.

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Herzinger, C.

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

Highstrete, C.

Hofmann, T.

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

Hu, B. B.

Hu, C.

Huang, C.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[Crossref] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ishikawa, A.

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Jacobsen, R. H.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[Crossref]

Jepsen, P. U.

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kanda, N.

Keiding, S.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[Crossref]

Koch, M.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Konishi, K.

Koroliev, A.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Kula, P.

Kurz, H.

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Kuwata-Gonokami, M.

Lai, Y.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Lederer, F.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Lee, M.

Lewen, F.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Li, J.

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Linden, S.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, K.

K. Liu, M. Brown, and R. Saykally, “Terahertz laser vibration-rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Luo, X.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[Crossref] [PubMed]

Ma, X.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[Crossref] [PubMed]

Maiwald, F.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Menzel, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Mittleman, D.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Moser, H. O.

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Nagel, M.

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Nayyeri, V.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26(2-3), 251–263 (2012).
[Crossref]

Neelamani, R.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Negirev, A.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Nuss, M. C.

O’Hara, J. F.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Pan, C.-L.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Pan, R.-P.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Park, Y.-S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Paveljev, D.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Pilon, D. V.

Plum, E.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Pu, M.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[Crossref] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Reuter, M.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rudd, J.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Saw, B. T.

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Saykally, R.

K. Liu, M. Brown, and R. Saykally, “Terahertz laser vibration-rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Schade, U.

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

Scheller, M.

Scherger, B.

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Schubert, M.

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Singh, R.

Smirnova, E.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Soleimani, M.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26(2-3), 251–263 (2012).
[Crossref]

Soukoulis, C. M.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

Strikwerda, A. C.

Sun, W.

Tanaka, T.

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Tao, H.

Taylor, A. J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Thrane, L.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Uhd Jepsen, P.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[Crossref]

Vieweg, N.

Vowinkel, B.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Wang, H.-Z.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Wang, X.

Wang, Y.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Wegener, M.

Wen, X.

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

Wilhelmi, O.

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Winnewisser, G.

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

Ye, J.

Yeh, P.

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
[Crossref]

Yi, G.

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zarifi, D.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26(2-3), 251–263 (2012).
[Crossref]

Zhang, S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

Zhao, R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Zheludev, N.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zheludev, N. I.

Zheng, H. H.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Zheng, J.

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Appl. Phys. B (1)

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]

Appl. Phys. Lett. (3)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Chem. Phys. Lett. (1)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[Crossref]

J. Electromagn. Waves Appl. (1)

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl. 26(2-3), 251–263 (2012).
[Crossref]

J. Mol. Spectrosc. (1)

F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A. Koroliev, A. Negirev, D. Paveljev, B. Vowinkel, and G. Winnewisser, “Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier,” J. Mol. Spectrosc. 202(1), 166–168 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. A (1)

K. Liu, M. Brown, and R. Saykally, “Terahertz laser vibration-rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

J. Phys. Chem. B (2)

H. Chen, H. Bian, J. Li, X. Guo, X. Wen, and J. Zheng, “Molecular Conformations of Crystalline l-Cysteine Determined with Vibrational Cross Angle Measurements,” J. Phys. Chem. B 117(49), 15614–15624 (2013).
[Crossref] [PubMed]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Nat. Photonics (1)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Commun. (2)

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
[Crossref]

C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotator using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013).
[Crossref]

Opt. Express (8)

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007).
[Crossref] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref] [PubMed]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol. 47(21), 3815–3821 (2002).
[Crossref] [PubMed]

Phys. Rev. B (3)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. Azad, R. Cheville, F. Lederer, W. Zhang, and N. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B 83(11), 115124 (2011).
[Crossref]

Phys. Rev. Lett. (3)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Prog. Electromag. Res. M (1)

F. Fang and Y. Cheng, “Dual-Band Terahertz Chiral Metamaterial with Giant Optical Activity and Negative Refractive Index Based on Cross-Wire Strucure,” Prog. Electromag. Res. M 31, 59–69 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77(6), 063902 (2006).
[Crossref]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (1)

M. Mazur and W. Zieniutycz, “Multi-layer meander line polarizer for Ku band,” in Microwaves, Radar and Wireless Communications.2000. MIKON-2000. 13th International Conference on, (IEEE, 2000), 78–81.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the metamaterial design, (a) illustration of TCSRs array and incident/reflected THz waves - an x-polarized THz wave incident to the metamaterial that is reflected as y-polarized. (b) Unit cell of the TCSRs, it contains three layers of materials as labeled. All dimensions are marked. (c) Optical microscope image of a fabricated sample. The brighter parts (split rings) are made of gold, and the darker parts are the polyimide layer on a gold plate.
Fig. 2
Fig. 2 (a) Optical setup of reflection measurement illustration. The red line represents the 780 nm laser, and the green lines are the traces of THz wave (b) sketch of measurements and polarizer angles. b1 is the reference measurement, b2 is for Rxx measurement and b3 is for Rxy measurement. Red arrows represent the polarizer directions. The x-axis of the sample is aligned to be along the first polarization direction.
Fig. 3
Fig. 3 (a) Time domain THZ signal. The black curve is from the reference object, the blue curve is from the co-polarization measurement, and the dash red curve is from the cross-polarization measurement. (b) Calculated (solid) and measured (dash) reflectance spectra from the normal incident direction. Rxx (black) is the parallel reflectance and Rxy (red) is the perpendicular reflectance.
Fig. 4
Fig. 4 Calculation and experimental results for the non-tilted coupled rings: (a) Transmission spectra without the back mirror. Black and red lines represent the x and y polarization, respectively. (b) Magnetic field distributions |H| of mode A and mode B. (c) Reflectance spectra with the back mirror. Positions of modes are marked with arrows. Solid lines are simulation results and dash lines show the experimental results: red (y-polarization) and black (x-polarization). (d) Illustration of plasmon hybridization of mode B splitting into modes B1 and B2. (e) Electric field distributions of modes A1, A2, B1, and B2.
Fig. 5
Fig. 5 Surface current distribution and illustration of polarization conversion. (a) Surface current distribution at 0.44 THz. The arrows around the rings are the simulated surface current distribution on the tilted couple rings layer. The total current direction is represented by the red arrow. The arrows on the light yellow plane are the surface current distribution on the back reflector. The total current direction is represented by the deep blue arrows. (b) Illustration to show a polarization rotation. The light blue arrow is the incident x-polarized THz wave. Its v component is the solid green arrow. Its u component is the violet arrow. The reflected wave is the red arrow. The reflected v component is the dash green arrow as it is 180 degree out of phase from the incident component, and the u component is also the violet arrow because the reflection is in phase in this direction.

Metrics