Abstract

A microring-based silicon modulator operating at 40 Gb/s near 1310 nm is demonstrated for the first time to our knowledge. NRZ-OOK signals at 40 Gb/s with 6.2 dB extinction ratio are observed by applying a 4.8 Vpp driving voltage and biasing the modulator at 7 dB insertion loss point. The energy efficiency is 115 fJ/bit. The transmission performance of 40 Gb/s NRZ-OOK through 40 km of standard single mode fiber without dispersion compensation is also investigated. We show that the link suffers negligible dispersion penalty. This makes the modulator a potential candidate for metro network applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
180 Gb/s single carrier single polarization 16-QAM transmission using an O-band silicon photonic IQM

Alireza Samani, Eslam El-Fiky, Mohammed Osman, David Patel, Rui Li, Maxime Jacques, and David Plant
Opt. Express 27(10) 14447-14456 (2019)

Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s

Yang Liu, Ran Ding, Yangjin Ma, Yisu Yang, Zhe Xuan, Qi Li, Andy Eu-Jin Lim, Guo-Qiang Lo, Keren Bergman, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 22(13) 16431-16438 (2014)

High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 25(12) 13222-13229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  2. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
    [Crossref] [PubMed]
  3. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21(8), 9722–9733 (2013).
    [Crossref] [PubMed]
  4. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19(27), 26017–26026 (2011).
    [Crossref] [PubMed]
  5. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
    [Crossref] [PubMed]
  6. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
    [Crossref]
  7. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [Crossref] [PubMed]
  8. Y. Liu, R. Ding, Q. Li, X. Zhe, Y. Li, Y. Yang, A. Lim, P. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320 Gb/s and 160 Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper Th4G.6.
    [Crossref]
  9. G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).
  10. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
    [Crossref]
  11. J. P. Turkiewicz and H. De Waardt, “Low complexity up to 400-Gb/s transmission in the 1310-nm wavelength domain,” IEEE Photon. Technol. Lett. 24(11), 942–944 (2012).
    [Crossref]
  12. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [Crossref] [PubMed]
  13. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [Crossref] [PubMed]
  14. Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. E.-J. Lim, T. Liow, S. H.-G. Teo, G. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” in Optical Interconnects Conference, 2013 IEEE, pp. 27–28, IEEE 2013.
    [Crossref]
  15. I.-L. Gheorma and R. M. Osgood., “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photon. Technol. Lett. 14(6), 795–797 (2002).
    [Crossref]
  16. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).
  17. E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [Crossref] [PubMed]
  18. R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
    [Crossref]
  19. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref] [PubMed]
  20. G.652: Characteristics of a single-mode optical fibre and cable (11/2009), International Telecommunication Union. Accessed Jun 1st, 2014. https://www.itu.int/rec/T-REC-G.652-200911-I/en
  21. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
    [Crossref]

2014 (2)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

2013 (3)

2012 (2)

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

J. P. Turkiewicz and H. De Waardt, “Low complexity up to 400-Gb/s transmission in the 1310-nm wavelength domain,” IEEE Photon. Technol. Lett. 24(11), 942–944 (2012).
[Crossref]

2011 (2)

2010 (1)

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

2009 (2)

2006 (2)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2002 (1)

I.-L. Gheorma and R. M. Osgood., “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photon. Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

1988 (1)

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[Crossref]

Asghari, M.

Assefa, S.

Atlas, D. A.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[Crossref]

Baehr-Jones, T.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Barwicz, T.

Ben Bakir, B.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Bergman, K.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

Brimont, A.

Chee, E. K.

Chu, T.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Cunningham, J. E.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

Daut, D. G.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[Crossref]

de Gyves, A. V.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

De Waardt, H.

J. P. Turkiewicz and H. De Waardt, “Low complexity up to 400-Gb/s transmission in the 1310-nm wavelength domain,” IEEE Photon. Technol. Lett. 24(11), 942–944 (2012).
[Crossref]

Ding, R.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Dong, F.

Dong, P.

Dulkeith, E.

Dumon, P.

Elrefaie, A. F.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[Crossref]

Fedeli, J. M.

Fedeli, J.-M.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Feng, D.

Gardes, F. Y.

Gheorma, I.-L.

I.-L. Gheorma and R. M. Osgood., “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photon. Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

Green, W. M.

Green, W. M. J.

Hochberg, M.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Hu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Krauss, T. F.

Krishnamoorthy, A. V.

Kung, C. C.

Lentine, A. L.

Li, G.

Li, Q.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

Li, X.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Li, Z.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Liang, H.

Liao, S.

Lim, A. E.

Lim, A. E.-J.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

Lipson, M.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Liu, Y.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Lo, G.-Q.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

Lo, P. G.

Luo, Y.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

Lyan, P.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Ma, Y.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Marris-Morini, D.

Martí, J.

Novack, A.

O’Faolain, L.

Orobtchouk, R.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Osgood, R. M.

I.-L. Gheorma and R. M. Osgood., “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photon. Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

Pan, H.

Poon, J. K. S.

Porzier, C.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Qian, W.

Raj, K.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

Rasigade, G.

Reed, G. T.

Roman, A.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Sacher, W. D.

Sanchis, P.

Schares, L.

Schmidt, B.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Shafiiha, R.

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

Shakya, J.

Shank, S. M.

Shubin, I.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

Streshinsky, M.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

Thacker, H.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

Trotter, D. C.

Tu, X.

Turkiewicz, J. P.

J. P. Turkiewicz and H. De Waardt, “Low complexity up to 400-Gb/s transmission in the 1310-nm wavelength domain,” IEEE Photon. Technol. Lett. 24(11), 942–944 (2012).
[Crossref]

Vivien, L.

Vlasov, Y. A.

Wagner, R. E.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[Crossref]

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19(27), 26017–26026 (2011).
[Crossref] [PubMed]

Xia, F.

Xiao, X.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Xiong, K.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Xu, H.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Xuan, Z.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

Yang, Y.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Yao, J.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

Yu, J.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Yu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Zheng, D.

Zheng, X.

Zortman, W. A.

IEEE J. Sel. Top. Quantum Electron. (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401819 (2013).

IEEE Photon. Technol. Lett. (4)

J. P. Turkiewicz and H. De Waardt, “Low complexity up to 400-Gb/s transmission in the 1310-nm wavelength domain,” IEEE Photon. Technol. Lett. 24(11), 942–944 (2012).
[Crossref]

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

I.-L. Gheorma and R. M. Osgood., “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photon. Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

IEEE Photonics Journal (1)

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal 6(3), 6600608 (2014).
[Crossref]

J. Lightwave Technol. (1)

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[Crossref]

Nat Commun (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat Commun 5, 4008 (2014).
[Crossref] [PubMed]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (8)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[Crossref] [PubMed]

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21(8), 9722–9733 (2013).
[Crossref] [PubMed]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19(27), 26017–26026 (2011).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[Crossref] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[Crossref] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref] [PubMed]

Other (4)

G.652: Characteristics of a single-mode optical fibre and cable (11/2009), International Telecommunication Union. Accessed Jun 1st, 2014. https://www.itu.int/rec/T-REC-G.652-200911-I/en

Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. E.-J. Lim, T. Liow, S. H.-G. Teo, G. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” in Optical Interconnects Conference, 2013 IEEE, pp. 27–28, IEEE 2013.
[Crossref]

Y. Liu, R. Ding, Q. Li, X. Zhe, Y. Li, Y. Yang, A. Lim, P. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320 Gb/s and 160 Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper Th4G.6.
[Crossref]

G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Layout of the modulator. Light green stands for the 90nm thick Si, dark green for the waveguide, and gray for the back-end metallization. Red stands for p doping, and blue for n doping. Deeper the color, heavier the dose. (b) Chip photograph of the fabricated device. Each electrical trace is connected to a 60µm × 60µm pad (not depicted in the picture).
Fig. 2
Fig. 2 Cross-section of the phase shifter.
Fig. 3
Fig. 3 (a) Transmission spectrum of the modulator. (b) Enlarged transmission spectra with 0V – (−4)V junction bias voltages. (c) Fitted notch wavelength shift versus junction bias. (d) Enlarged transmission spectra with 0 V – 3 V thermal tuning voltages. The current for each voltage is as follows: 0mA, 0.89 mA, 1.24 mA, 1.49 mA, 1.68 mA, and 1.82 mA. (e) Fitted notch wavelength shift versus thermal power.
Fig. 4
Fig. 4 (a) RC circuit model at 0V junction bias. Cpad: pad capacitance. Cj: pn junction capacitance. Rs: series resistance from the pad to the junction. (b) Measured S11 (dot) and stimulated S11 of the fitted circuit model (solid).
Fig. 5
Fig. 5 (a) Fiber dispersion characterization setup. PDFA: praseodymium-doped fiber amplifier. LiNbO3: commercial LiNbO3-based Mach-Zehnder modulator. Rx: receiver. (b) The measured waveform as seen on oscilloscope at different wavelengths. The red arrows indicate the time stamp of the rising edge. (c) Relative delay time versus the wavelength. Dot: measured data points. Curve: spline interpolation. The corresponding group index difference is annotated on the right Y-axis. (d) Calculated dispersion curve.
Fig. 6
Fig. 6 (a) High-speed data link testbench. MOD: microring modulator. Rx: receiver. SOA: semiconductor optical amplifier. (b) Layout of the filter. (c) Chip photograph of the fabricated device.
Fig. 7
Fig. 7 (a) 40 Gb/s optical eye of the modulated signal. Junction bias: −2.6 V. (b)-(d) 40 Gb/s electrical eye after 0km/20km/40km transmission. The average optical power into the receiver is kept at −3.8 dBm by adjusting the PDFA. CW laser wavelength: 1314.852 nm.

Metrics