Abstract

We propose and demonstrate a novel scheme to effectively suppress the cross modulation distortion (XMD) and the third-order inter-modulation distortion (IMD3) which exist in wide-band, multi-carrier analog photonic link (APL) system. Such nonlinearities, which are caused by the out-of-band and in-band signals, respectively, constrain the link’s performance severely. Instead of building an extra nonlinear path in hardware, the XMD and IMD3 compensation information is extracted from the received distorted signal, and both distortions are then suppressed by digitally multiplying the distorted signal with the compensation information. After compensation in the digital domain, the down-converted XMD and IMD3 distortions are experimentally suppressed with 33 dB and 25 dB, respectively, resulting in an improved upper limit for the SFDR.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital linearization of multi-carrier RF link with photonic bandpass sampling

Yitang Dai, Xiaodong Liang, Feifei Yin, Yue Zhou, Junyi Zhang, Lan Yu, Jianqiang Li, and Kun Xu
Opt. Express 23(18) 23177-23184 (2015)

Digital joint compensation of IMD3 and XMD in broadband channelized RF photonic link

Xiaojun Xie, Yitang Dai, Kun Xu, Jian Niu, Ruixin Wang, Li Yan, Yuefeng Ji, and Jintong Lin
Opt. Express 20(23) 25636-25643 (2012)

Dynamic range improvement in analog photonic link by intermodulation-compensation receiver

Feifei Yin, Dan Tu, Xiaodong Liang, Yitang Dai, Junyi Zhang, Jianqiang Li, and Kun Xu
Opt. Express 23(9) 11242-11249 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
    [Crossref]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [Crossref]
  3. A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
    [Crossref]
  4. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol. 27(15), 3034–3041 (2009).
    [Crossref]
  5. V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
    [Crossref]
  6. D. Lam, A. M. Fard, B. Buckley, and B. Jalali, “Digital broadband linearization of optical links,” Opt. Lett. 38(4), 446–448 (2013).
    [Crossref] [PubMed]
  7. P. S. Devgan, J. F. Diehl, V. J. Urick, C. E. Sunderman, and K. J. Williams, “Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs,” Opt. Express 17(11), 9028–9039 (2009).
    [Crossref] [PubMed]
  8. Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
    [Crossref] [PubMed]
  9. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
    [Crossref]
  10. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol. 27(15), 3034–3041 (2009).
    [Crossref]
  11. S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express 19(8), 7865–7871 (2011).
    [Crossref] [PubMed]
  12. A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett. 23(1), 24–26 (2011).
    [Crossref]
  13. T. Banwell, A. Agarwal, P. Toliver, and T. K. Woodward, “ Compensation of cross-gain modulation in filtered multi-channel optical signal processing applications,” in Optical Fiber Communication Conference and Exposition, Technical Digest (CD) (Optical Society of America, 2010), paper OWW5.
  14. X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, Y. Ji, and J. Lin, “Digital joint compensation of IMD3 and XMD in broadband channelized RF photonic link,” Opt. Express 20(23), 25636–25643 (2012).
    [Crossref] [PubMed]
  15. Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).
  16. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Downconversion and linearization of X- and K-band analog photonic links using digital post-compensation,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (OSA, 2013), paper JW2A.59.
    [Crossref]
  17. Phard, “Modulator Bias Controllers,” http://www.pharad.com/pdf/bias-controller-brochure.pdf .
  18. V. J. Urick and F. Bucholtz, “Compensatioin of arbitrary chromatic dispersion in analog links using a modulation diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
    [Crossref]

2014 (1)

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).

2013 (2)

2012 (2)

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, Y. Ji, and J. Lin, “Digital joint compensation of IMD3 and XMD in broadband channelized RF photonic link,” Opt. Express 20(23), 25636–25643 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

2009 (3)

2006 (2)

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

2005 (1)

V. J. Urick and F. Bucholtz, “Compensatioin of arbitrary chromatic dispersion in analog links using a modulation diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[Crossref]

Agarwal, A.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett. 23(1), 24–26 (2011).
[Crossref]

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

Banwell, T.

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett. 23(1), 24–26 (2011).
[Crossref]

Bucholtz, F.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

V. J. Urick and F. Bucholtz, “Compensatioin of arbitrary chromatic dispersion in analog links using a modulation diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[Crossref]

Buckley, B.

Cui, Y.

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Dai, J.

Dai, Y.

Dalton, L. R.

Devgan, P. S.

Diehl, J. F.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

P. S. Devgan, J. F. Diehl, V. J. Urick, C. E. Sunderman, and K. J. Williams, “Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs,” Opt. Express 17(11), 9028–9039 (2009).
[Crossref] [PubMed]

Draa, M. N.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

Fard, A. M.

Fetterman, H. R.

Hraimel, B.

Jalali, B.

Ji, Y.

Kim, S. K.

Knapp, P.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Lam, D.

Li, J.

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Liang, X.

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).

Lin, J.

Liu, W.

Masella, B.

McKinney, J. D.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

Niu, J.

Pei, Q.

Rogge, M.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Sunderman, C. E.

Swingen, L.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Toliver, P.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett. 23(1), 24–26 (2011).
[Crossref]

Urick, V.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

Urick, V. J.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

P. S. Devgan, J. F. Diehl, V. J. Urick, C. E. Sunderman, and K. J. Williams, “Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs,” Opt. Express 17(11), 9028–9039 (2009).
[Crossref] [PubMed]

V. J. Urick and F. Bucholtz, “Compensatioin of arbitrary chromatic dispersion in analog links using a modulation diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[Crossref]

Wang, R.

Williams, K. J.

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

P. S. Devgan, J. F. Diehl, V. J. Urick, C. E. Sunderman, and K. J. Williams, “Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs,” Opt. Express 17(11), 9028–9039 (2009).
[Crossref] [PubMed]

Woodward, T. K.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett. 23(1), 24–26 (2011).
[Crossref]

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

Xie, X.

Xu, K.

Yan, L.

Yin, F.

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhang, X.

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

IEEE Photon. J. (1)

Y. Dai, Y. Cui, X. Liang, F. Yin, J. Li, K. Xu, and J. Lin, “Performance improvement in analog photonics link incorporating digital post-compensation and low-noise electrical amplifier,” IEEE Photon. J. 6(4), 5500807 (2014).

IEEE Photon. Technol. Lett. (3)

V. J. Urick and F. Bucholtz, “Compensatioin of arbitrary chromatic dispersion in analog links using a modulation diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[Crossref]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, “Predistortion compensation of nonlinearities in channelized RF photonic links using a dual-port optical modulator,” IEEE Photon. Technol. Lett. 23(1), 24–26 (2011).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, B, “Wide-band pre-distortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

V. J. Urick, J. F. Diehl, M. N. Draa, J. D. McKinney, and K. J. Williams, “Wideband analog photonic links: some performance limits and considerations for multi-octave implementations,” Proc. SPIE 8259, 825904 (2012).
[Crossref]

Other (3)

T. Banwell, A. Agarwal, P. Toliver, and T. K. Woodward, “ Compensation of cross-gain modulation in filtered multi-channel optical signal processing applications,” in Optical Fiber Communication Conference and Exposition, Technical Digest (CD) (Optical Society of America, 2010), paper OWW5.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Downconversion and linearization of X- and K-band analog photonic links using digital post-compensation,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (OSA, 2013), paper JW2A.59.
[Crossref]

Phard, “Modulator Bias Controllers,” http://www.pharad.com/pdf/bias-controller-brochure.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup and (b) the flow diagram of the proposed linearization algorithm.
Fig. 2
Fig. 2 The suppression ratios of the down-converted target IF to XMD sidebands with the increased powers of (a) input RF signal and (b) interferer signal, respectively.
Fig. 3
Fig. 3 The RF spectrums of the down-converted target IF sidebands (a) before and (b) after XMD compensation. The blue points represent target IF, the pink points are XMD sidebands, and the red points are IMD3 sidebands.
Fig. 4
Fig. 4 The received spectrum of the down-converted target IF sidebands with both XMD and IMD3 compensation. The blue points represent target IF, the pink points are XMD sidebands, and the red points are IMD3 sidebands.
Fig. 5
Fig. 5 Measured down-converted target IF and inter-modulation components versus the input RF powers without and with the proposed digital linearization.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

x ( t ) = k A k ( t ) cos ( ω k t + φ k ( t ) )
S ( t ) = a 0 + a 1 x ( t ) + a 2 [ x ( t ) ] 2 + a 3 [ x ( t ) ] 3 +
S ( t ) a 0 + a 2 2 k A k 2 ( t ) Nonlinearity 1 st + k [ a 1 + a 3 ( 3 4 A k 2 ( t ) I M D 3 + 3 2 m A m 2 ( t ) X M D ) ] 2 n d A k ( t ) cos ( ω k t + φ k ( t ) )
S 1 = [ a 1 + a 3 ( 3 4 A k 2 ( t ) + 3 2 m A m 2 ( t ) ) ] A k ( t ) cos ( ω k t + φ k ( t ) )
S 0 = a 0 + a 2 2 k A k 2 ( t )
S L x m c ( t ) = S 1 S 0 γ = a 0 γ a 1 [ 1 + ( γ a 2 2 a 0 + 3 a 3 2 a 1 ) A m 2 ( t ) 3 a 3 4 a 1 A k 2 ( t ) ] A k ( t ) cos ( ω k t + φ k ( t ) ) = a 0 γ a 1 ( 1 3 a 3 4 a 1 A k 2 ( t ) ) A k ( t ) cos ( ω k t + φ k ( t ) )
γ = 3 a 3 a 0 a 1 a 2
S I M D 3 c = 1 + λ S 1 2 = 1 + 1 2 λ a 1 2 A k 2 ( t )
S L ( t ) = S L x m c ( t ) S I M D 3 c a 0 γ a 1 A k ( t ) cos ( ω k t + φ k ( t ) )
S L ( t ) = S 0 γ S 1 / ( 1 + λ F { S 1 2 } )
γ = 3 a 0 a 3 a 1 a 2 = 1 + sin φ sin φ
λ = 3 a 3 2 a 1 3 = 1 O I P 3 R 50 Ω

Metrics