Abstract

We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu2ZnSnSe4 layers on GaAs(001) that ”standing” and ”lying” kesterite unit cell orientations (c’-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers. The method can be transferred to kesterite layers oriented in any crystal direction and can shed light on the growth of such layers in general.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of Cu2ZnSnSe4 thin films and identification of secondary phases by spectroscopic ellipsometry

Özden Demircioğlu, José Fabio López Salas, Germain Rey, Thomas Weiss, Marina Mousel, Alex Redinger, Susanne Siebentritt, Jürgen Parisi, and Levent Gütay
Opt. Express 25(5) 5327-5340 (2017)

Optical modeling and optimizations of Cu2ZnSnSe4 solar cells using the modified transfer matrix method

Dario Cozza, Carmen M. Ruiz, David Duché, Sergio Giraldo, Edgardo Saucedo, Jean Jacques Simon, and Ludovic Escoubas
Opt. Express 24(18) A1201-A1209 (2016)

Structural study and Raman scattering analysis of Cu2ZnSiTe4 bulk crystals

Serghei Levcenko, Alexandr Nateprov, Victor Kravtsov, Maxim Guc, Alejandro Pérez-Rodríguez, Victor Izquierdo-Roca, Xavier Fontané, and Ernest Arushanov
Opt. Express 22(S7) A1936-A1943 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).
  2. S. Oueslati, G. Brammertz, and M. Buffière, Thin Solid Films (submitted) (2014).
  3. A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.
  4. C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
    [Crossref]
  5. S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovoltaics 20, 512–519 (2012).
    [Crossref]
  6. S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
    [Crossref]
  7. M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
    [Crossref]
  8. M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
    [Crossref]
  9. R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
    [Crossref]
  10. R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
    [Crossref]
  11. N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
    [Crossref]
  12. J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
    [Crossref]
  13. M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
    [Crossref]
  14. D. Dumcenco and Y.-S. Huang, “The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy,” Opt. Mater. 35, 419–425 (2012).
    [Crossref]
  15. A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
    [Crossref] [PubMed]
  16. B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
    [Crossref]
  17. R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
    [Crossref]
  18. K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).
    [Crossref]
  19. T. Gürel, C. Sevik, and T. Çağın, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B 84, 205201 (2011).
    [Crossref]
  20. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
    [Crossref]

2014 (2)

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

2013 (4)

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

2012 (5)

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

D. Dumcenco and Y.-S. Huang, “The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy,” Opt. Mater. 35, 419–425 (2012).
[Crossref]

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovoltaics 20, 512–519 (2012).
[Crossref]

2011 (4)

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
[Crossref] [PubMed]

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).
[Crossref]

T. Gürel, C. Sevik, and T. Çağın, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B 84, 205201 (2011).
[Crossref]

2010 (1)

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

2008 (1)

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

1964 (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
[Crossref]

Ahn, S.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Altosaar, M.

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Arushanov, E.

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

Aydil, E. S.

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

Beall, C.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Berg, D. M.

A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
[Crossref] [PubMed]

Blackburn, J.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Bojarczuk, N. A.

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

Brammertz, G.

S. Oueslati, G. Brammertz, and M. Buffière, Thin Solid Films (submitted) (2014).

Buffière, M.

S. Oueslati, G. Brammertz, and M. Buffière, Thin Solid Films (submitted) (2014).

Çagin, T.

T. Gürel, C. Sevik, and T. Çağın, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B 84, 205201 (2011).
[Crossref]

Cheong, H.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Cho, A.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Choubrac, L.

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

Cococcioni, M.

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

Colombara, D.

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

Crossay, A.

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

Dale, P. J.

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
[Crossref] [PubMed]

Danilson, M.

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Djemour, R.

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Dumcenco, D.

D. Dumcenco and Y.-S. Huang, “The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy,” Opt. Mater. 35, 419–425 (2012).
[Crossref]

Ericson, T.

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

Fontané, X.

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

Gao, C.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Gerthsen, D.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Gokmen, T.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Grossberg, M.

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Guc, M.

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

Guha, S.

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

Gunawan, O.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Gürel, T.

T. Gürel, C. Sevik, and T. Çağın, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B 84, 205201 (2011).
[Crossref]

Gütay, L.

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Gwak, J.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Hetterich, M.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Himmetoglu, B.

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

Huang, Y.-S.

D. Dumcenco and Y.-S. Huang, “The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy,” Opt. Mater. 35, 419–425 (2012).
[Crossref]

Izquierdo-Roca, V.

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

Izumi, F.

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).
[Crossref]

Jay Chey, S.

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

Johnson, M.

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

Jung, S.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Kalt, H.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Khare, A.

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

Krämmer, C.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Krustok, J.

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Lafond, A.

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

Lang, M.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Levcenko, S.

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

Loudon, R.

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
[Crossref]

Mellikov, E.

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Mitzi, D. B.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Momma, K.

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).
[Crossref]

Mousel, M.

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

Norris, D. J.

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

Noufi, R.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Oueslati, S.

S. Oueslati, G. Brammertz, and M. Buffière, Thin Solid Films (submitted) (2014).

Pankow, J.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Park, D.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Pérez-Rodríguez, A.

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

Pfaffmann, L.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Platzer-Björkman, C.

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

Powalla, M.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Raadik, T.

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

Raudoja, J.

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Redinger, A.

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
[Crossref] [PubMed]

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Repins, I.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Sachs, J.

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

Schorr, S.

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovoltaics 20, 512–519 (2012).
[Crossref]

Scragg, J. J. S.

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

Sendler, J.

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Sevik, C.

T. Gürel, C. Sevik, and T. Çağın, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B 84, 205201 (2011).
[Crossref]

Shin, B.

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

Shin, K.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Siebentritt, S.

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

R. Djemour, A. Redinger, M. Mousel, L. Gütay, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, and S. Siebentritt, “The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4,” Opt. Express 21, A695–A703 (2013).
[Crossref]

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovoltaics 20, 512–519 (2012).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
[Crossref] [PubMed]

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Teeter, G.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Timmo, K.

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

To, B.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Todorov, T. K.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Vora, N.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Wang, W.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Weiss, T.

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Winkler, M. T.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Yoon, K.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Young, M.

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Yun, J. H.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

Zhu, Y.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

Adv. Energy Mater. (1)

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4, 1301465 (2013).

Adv. Phys. (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
[Crossref]

Appl. Phys. Lett. (5)

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, and S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a tin diffusion barrier,” Appl. Phys. Lett. 101, 053903 (2012).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102, 222108 (2013).
[Crossref]

J. J. S. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Björkman, “A low-temperature order-disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104, 041911 (2014).
[Crossref]

C. Krämmer, J. Sachs, M. Lang, L. Pfaffmann, C. Gao, D. Gerthsen, H. Kalt, M. Powalla, and M. Hetterich, “Fabrication of polycrystalline Cu2ZnSnSe4 layers with strongly preferential grain orientation via selenization of Sn/Cu/ZnSe(001)/GaAs(001) structures,” Appl. Phys. Lett. 104, 071913 (2014).
[Crossref]

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97, 021905 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, “The Consequences of Kesterite Equilibria for Efficient Solar Cells,” J. Am. Chem. Soc. 133, 3320–3323 (2011).
[Crossref] [PubMed]

J. Appl. Crystallogr. (1)

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).
[Crossref]

J. Appl. Phys. (2)

M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys. 114, 193514 (2013).
[Crossref]

A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys. 111, 083707 (2012).
[Crossref]

J. Vac. Sci. Technol. A (1)

N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi, “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A 30, 051201 (2012).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

D. Dumcenco and Y.-S. Huang, “The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy,” Opt. Mater. 35, 419–425 (2012).
[Crossref]

Phys. Rev. B (1)

T. Gürel, C. Sevik, and T. Çağın, “Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures,” Phys. Rev. B 84, 205201 (2011).
[Crossref]

Phys. Status Solidi A (1)

M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, “Cu2Zn1−x Cdx Sn(Se1−y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi A 205, 167–170 (2008).
[Crossref]

Prog. Photovoltaics (1)

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovoltaics 20, 512–519 (2012).
[Crossref]

Thin Solid Films (1)

M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications,” Thin Solid Films 519, 7403–7406 (2011).
[Crossref]

Other (2)

S. Oueslati, G. Brammertz, and M. Buffière, Thin Solid Films (submitted) (2014).

A. Redinger, R. Djemour, T. Weiss, J. Sendler, L. Gütay, and S. Siebentritt, “Molecular beam epitaxy of Cu2ZnSnSe4 thin films grown on GaAs(001),” in Proceedings of the 39th IEEE Photovoltaics Specialists Conference (IEEE, 2013), pp.420–426.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Polarized Raman spectrum of a textured sample for the two possible polarizations eies and eies.
Fig. 2
Fig. 2 Intensity dependence under sample rotation for three different samples. The poly-crystalline sample does not exhibit any oscillations whereas the epitaxial samples exhibit intensity oscillations with a period of 90°. The intensity behaviour of the A-mode indicates the presence of lying kesterite unit cells on the GaAs substrate. Intensities were normalized to the A-mode at 197 cm−1 (eies).

Tables (2)

Tables Icon

Table 1 Raman tensors with tensor elements a–f for the space group I4̄ assuming a standing unit cell (z′|z ‖ GaAs[001]) [17]

Tables Icon

Table 2 Angular intensity dependencies for sample rotation around the optical axis for the different CZTSe unit cell orientations on GaAs(001).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I | e s T e i | 2

Metrics