Abstract

As a result of its non-invasive and non-destructive nature, ultrasound imaging has found a variety of applications in a wide range of fields, including healthcare and electronics. One accurate and sensitive approach for detecting ultrasound waves is based on optical microcavities. Previous research using polymer microring resonators demonstrated detection based on the deformation of the cavity induced by the ultrasound wave. An alternative detection approach is based on the photoelastic effect in which the ultrasound wave induces a strain in the material that is converted to a refractive index change. In the present work, photoelastic-based ultrasound detection is experimentally demonstrated using ultra high quality factor silica optical microcavities. As a result of the increase in Q and in coupled power, the noise equivalent pressure is reduced, and the device response is increased. A finite element method model that includes both the acoustics and optics components of this system is developed, and the predictive accuracy of the model is determined.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging

Stefan Preisser, Wolfgang Rohringer, Mengyang Liu, Christian Kollmann, Stefan Zotter, Balthasar Fischer, and Wolfgang Drexler
Biomed. Opt. Express 7(10) 4171-4186 (2016)

Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect

Todd W. Murray, Lei Sui, Gopi Maguluri, Ronald A. Roy, Alex Nieva, Florian Blonigen, and Charles A. DiMarzio
Opt. Lett. 29(21) 2509-2511 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23(8), 648–650 (1998).
    [Crossref] [PubMed]
  2. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  3. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
    [Crossref] [PubMed]
  4. A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  5. C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
    [Crossref] [PubMed]
  6. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
    [Crossref] [PubMed]
  7. H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
    [PubMed]
  8. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  9. A. Yariv and P. Yeh, Optical waves in crystals: propagation and control of laser radiation (Wiley, 1984).
  10. M. V. Chistiakova and A. M. Armani, “Cascaded Raman microlaser in air and buffer,” Opt. Lett. 37(19), 4068–4070 (2012).
    [Crossref] [PubMed]
  11. O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
    [Crossref] [PubMed]
  12. A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photon. Technol. Lett. 14(1), 53–55 (2002).
    [Crossref]
  13. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  14. S.-L. Chen, T. Ling, and L. J. Guo, “Polymer microring resonators for high sensitivity, broadband, wide-directivity ultrasound detection and high-resolution imaging,” (2012), pp. 82361D–82361D–82312.
  15. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
    [Crossref] [PubMed]
  16. T. Ling, S. L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
    [Crossref] [PubMed]
  17. H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
    [PubMed]
  18. W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
    [Crossref] [PubMed]
  19. C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
    [Crossref] [PubMed]

2014 (2)

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

2012 (2)

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

M. V. Chistiakova and A. M. Armani, “Cascaded Raman microlaser in air and buffer,” Opt. Lett. 37(19), 4068–4070 (2012).
[Crossref] [PubMed]

2011 (2)

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

T. Ling, S. L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

2008 (3)

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

2007 (2)

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

2006 (1)

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

2002 (1)

A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photon. Technol. Lett. 14(1), 53–55 (2002).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1998 (1)

1995 (1)

H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
[PubMed]

Armani, A. M.

Ashkenazi, S.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Benzel, W.

H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
[PubMed]

Bhat, K. P.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Callé, R.

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

Chao, C. Y.

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Chen, S. L.

T. Ling, S. L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

Chen, S.-L.

Chistiakova, M. V.

Davis, C. C.

A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photon. Technol. Lett. 14(1), 53–55 (2002).
[Crossref]

de Mul, F. F. M.

Dekker, A.

Dong, B. Q.

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

Dudley, R. K.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Fielding, A. J.

A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photon. Technol. Lett. 14(1), 53–55 (2002).
[Crossref]

Gao, F.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Gerhardt, D.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Greer, S. F.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Guo, L. J.

T. Ling, S. L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Heinritz, H.

H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
[PubMed]

Hoelen, C. G. A.

Hoffmann, K.

H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
[PubMed]

Hu, S.

Huang, S. W.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Iro, H.

H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
[PubMed]

Klaase, J. M.

Koues, O. I.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Kume, T.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Li, H.

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

Ling, T.

T. Ling, S. L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

Liu, W.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Manohar, S.

Maslov, K.

Matéo, T.

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Maxwell, A.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

McNeal, S.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Mofid, Y.

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

O’Donnell, M.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

Ossant, F.

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Plag, C.

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

Pongers, R.

Sasman, A.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Schultz, K. M.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Steenbergen, W.

Sun, C.

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

Truax, A. D.

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Vaartjes, S. E.

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

van den Engh, F. M.

van Hespen, J. C. G.

van Leeuwen, T. G.

Wang, L. V.

Zhang, H. F.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

Zhang, K.

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Zhang, Z.

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

Appl. Phys. Lett. (2)

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[Crossref] [PubMed]

T. Ling, S. L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011).
[Crossref] [PubMed]

HNO (1)

H. Heinritz, W. Benzel, K. Hoffmann, and H. Iro, “Imaging superficial skin tumors of the ENT area. High frequency ultrasound in comparison with computerized tomography and magnetic resonance tomography,” HNO 43, 6–11 (1995).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photon. Technol. Lett. 14(1), 53–55 (2002).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

C. Plag, Y. Mofid, T. Matéo, R. Callé, and F. Ossant, “High frequency ultrasound imaging of whole blood gelation and retraction during in vitro coagulation,” J. Acoust. Soc. Am. 131(5), 4196–4202 (2012).
[Crossref] [PubMed]

Mol. Cell. Biol. (1)

O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer, “Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1,” Mol. Cell. Biol. 28(19), 5837–5850 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Photoacoustics (1)

W. Liu, K. M. Schultz, K. Zhang, A. Sasman, F. Gao, T. Kume, and H. F. Zhang, “In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy,” Photoacoustics 2(2), 81–86 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Li, B. Q. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4, 4496 (2014).
[PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

A. Yariv and P. Yeh, Optical waves in crystals: propagation and control of laser radiation (Wiley, 1984).

S.-L. Chen, T. Ling, and L. J. Guo, “Polymer microring resonators for high sensitivity, broadband, wide-directivity ultrasound detection and high-resolution imaging,” (2012), pp. 82361D–82361D–82312.

Supplementary Material (1)

» Media 1: AVI (12928 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The resonant wavelength increases and decreases in response to the ultrasound pulse. (b) If the transmission values at a single wavelength (λo) are plotted, the characteristic damped oscillator curve is clear. The positive values indicate high pressure and the negative values indicate low pressure.

Fig. 2
Fig. 2

(a) Microscope image of a silica microsphere. (b) RF simulation results showing a small part of the sphere in a water environment with the mode distribution plotted at V/m2.

Fig. 3
Fig. 3

(a) Geometry of 2D FEM simulation in Comsol. (b) Pulse shape used in the model.

Fig. 4
Fig. 4

Simulation results. (a) FEM result showing the initial pulse as it passes by the silica microsphere. (b) FEM result for the echo coming from the steel sphere as it reaches the silica surface. (c) Pressure variations recorded with a 0.225μs pulse at the point just outside the silica surface boundary in the water. (d) Pressure variation within the silica material showing the effects of the initial pulse and the secondary echo.

Fig. 5
Fig. 5

Experimental testing of ultrasound response. (a) Schematic of the testing setup. (b) Rendering of the sensor setup. (c) Resonance peak used in the experiment with a Q of 9.5x107. The red dashed line shows the fit line used to convert simulation data. (d) Response from microsphere to a pulse from the transducer when it is placed in front of the sphere. (e) Transducer response to an echo coming from the silica microsphere.

Fig. 6
Fig. 6

Experimental data. (a) The entire signal received by the silica microsphere. (b) Zoomed-in graph of the steel echo. (c) Zoomed-in echo from the water-air interface.

Fig. 7
Fig. 7

Comparing experimental and simulation results. (a) Overlapping the experimental data (black) with simulation data (red). (b) Accuracy as a function of pulse width specified in the simulation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n 3 p 2 S
ρ f = ρ 0 ( 1 ( P P 0 ) K )
v S = K ρ
Z 0 = v S ρ .
A c c u r a c y = T P + T N T P + T N + F P + F N .

Metrics