Abstract

Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies for high resolution focusing at three different energies, 10, 11.8, and 25 keV.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV

Kahraman Keskinbora, Anna-Lena Robisch, Marcel Mayer, Umut T. Sanli, Corinne Grévent, Christian Wolter, Markus Weigand, Adriana Szeghalmi, Mato Knez, Tim Salditt, and Gisela Schütz
Opt. Express 22(15) 18440-18453 (2014)

Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime

Joan Vila-Comamala, Sergey Gorelick, Elina Färm, Cameron M. Kewish, Ana Diaz, Ray Barrett, Vitaliy A. Guzenko, Mikko Ritala, and Christian David
Opt. Express 19(1) 175-184 (2011)

High resolution double-sided diffractive optics for hard X-ray microscopy

Istvan Mohacsi, Ismo Vartiainen, Manuel Guizar-Sicairos, Petri Karvinen, Vitaliy A. Guzenko, Elisabeth Müller, Elina Färm, Mikko Ritala, Cameron M. Kewish, Andrea Somogyi, and Christian David
Opt. Express 23(2) 776-786 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlen,” Optik 29, 577–585 (1969).
  2. B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160 (1974).
    [Crossref]
  3. J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am. 64, 301–309 (1974).
    [Crossref]
  4. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
    [Crossref] [PubMed]
  5. T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
    [Crossref] [PubMed]
  6. S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
    [Crossref]
  7. E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
    [Crossref] [PubMed]
  8. P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 7643503 (2005).
    [Crossref]
  9. D. Attwood and T. David, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 2000).
  10. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
    [Crossref] [PubMed]
  11. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20) 17669–17677 (2009).
    [Crossref] [PubMed]
  12. J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
    [Crossref] [PubMed]
  13. S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
    [Crossref]
  14. M. J. Wojcik, D. C. Mancini, R. Divan, and L. E. Ocola, “X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold,” Microsyst. Technol., 1–6 (2014)
  15. J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
    [Crossref] [PubMed]
  16. E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).
  17. B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atom. Data Nucl. Data 54, 181–342 (1993).
    [Crossref]
  18. A.G. Michette, Optical Systems for Soft X Rays, (Plenum Press, 1986).
    [Crossref]
  19. J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
    [Crossref]
  20. I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
    [Crossref]
  21. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
    [Crossref]
  22. S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).
  23. I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
    [Crossref]
  24. J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
    [Crossref]
  25. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
    [Crossref] [PubMed]
  26. M. Lu, D. M. Tennant, and C. Jacobsen, “Orientation dependence of linewidth variation in sub-50-nm Gaussian e-beam lithography and its correction,” J. Vac. Sci. Technol. B 24, 2881–2885 (2006).
    [Crossref]
  27. M. Guizar-Sicairos and J. Gutierrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53–58 (2004).
    [Crossref]

2014 (1)

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

2013 (1)

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

2012 (1)

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

2011 (4)

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

2010 (2)

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (2)

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

2006 (2)

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

M. Lu, D. M. Tennant, and C. Jacobsen, “Orientation dependence of linewidth variation in sub-50-nm Gaussian e-beam lithography and its correction,” J. Vac. Sci. Technol. B 24, 2881–2885 (2006).
[Crossref]

2005 (2)

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 7643503 (2005).
[Crossref]

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

1995 (1)

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[Crossref] [PubMed]

1993 (1)

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atom. Data Nucl. Data 54, 181–342 (1993).
[Crossref]

1974 (2)

B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160 (1974).
[Crossref]

J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am. 64, 301–309 (1974).
[Crossref]

1969 (1)

G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlen,” Optik 29, 577–585 (1969).

Anderson, E. H.

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20) 17669–17677 (2009).
[Crossref] [PubMed]

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

Attwood, D.

D. Attwood and T. David, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 2000).

Attwood, D. T.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

Barrett, R.

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

Birch, J.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Bohic, S.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Cai, Z.

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Chao, W.

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20) 17669–17677 (2009).
[Crossref] [PubMed]

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

Chen, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Chubarova, E.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Cloetens, P.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Cotte, M.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

David, C.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

David, Christian

David, T.

D. Attwood and T. David, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 2000).

Davis, J.C.

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atom. Data Nucl. Data 54, 181–342 (1993).
[Crossref]

de Jonge, M. D.

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

Di Michiel, M.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Diaz, A.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

Divan, R.

M. J. Wojcik, D. C. Mancini, R. Divan, and L. E. Ocola, “X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold,” Microsyst. Technol., 1–6 (2014)

Donner, E.

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

Färm, E.

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

Fayard, B.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Feng, Y.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Feser, M.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Fischer, P.

Gorelick, S.

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

Grigoriev, M.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Guizar-Sicairos, M.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

M. Guizar-Sicairos and J. Gutierrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53–58 (2004).
[Crossref]

Gullikson, E.M.

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atom. Data Nucl. Data 54, 181–342 (1993).
[Crossref]

Gutierrez-Vega, J.

Guttman, P.

S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).

Guzenko, V. A.

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

Guzenko, V.A.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Harteneck, B. D.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

Heim, S.

S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).

Henke, B.L.

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atom. Data Nucl. Data 54, 181–342 (1993).
[Crossref]

Hertz, H. M.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 7643503 (2005).
[Crossref]

Holmberg, A.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Howells, M.

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[Crossref] [PubMed]

Jacobsen, C.

M. Lu, D. M. Tennant, and C. Jacobsen, “Orientation dependence of linewidth variation in sub-50-nm Gaussian e-beam lithography and its correction,” J. Vac. Sci. Technol. B 24, 2881–2885 (2006).
[Crossref]

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[Crossref] [PubMed]

Jansson, P. A. C.

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 7643503 (2005).
[Crossref]

Karvinen, P.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Kewis, C.M.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

Kewish, C. M.

Kewish, C.M.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Kim, J.

Kirz, J.

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[Crossref] [PubMed]

J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am. 64, 301–309 (1974).
[Crossref]

Kohn, V.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Kuehbacher, M.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Kuznetsov, S.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Lai, B.

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Liddle, J. A.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

Lindblom, M.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Lombi, E.

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

Lu, M.

M. Lu, D. M. Tennant, and C. Jacobsen, “Orientation dependence of linewidth variation in sub-50-nm Gaussian e-beam lithography and its correction,” J. Vac. Sci. Technol. B 24, 2881–2885 (2006).
[Crossref]

Lyon, A.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Mancini, D. C.

M. J. Wojcik, D. C. Mancini, R. Divan, and L. E. Ocola, “X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold,” Microsyst. Technol., 1–6 (2014)

Martinez-Criado, G.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Maser, J.

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Mercere, P.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Michette, A.G.

A.G. Michette, Optical Systems for Soft X Rays, (Plenum Press, 1986).
[Crossref]

Mohacsi, I.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Niemann, B.

B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160 (1974).
[Crossref]

Nilsson, D.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Ocola, L. E.

M. J. Wojcik, D. C. Mancini, R. Divan, and L. E. Ocola, “X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold,” Microsyst. Technol., 1–6 (2014)

Paterson, D.

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

Paunesku, T.

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

Rehbein, S.

S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).

Reinspach, J.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Rekawa, S.

Rishton, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Ritala, M.

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

Rodrigues, W.

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Rudolph, D.

B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160 (1974).
[Crossref]

G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlen,” Optik 29, 577–585 (1969).

Ryan, C. G.

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

Salomé, M.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

Sassolini, S.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Schmahl, G.

B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160 (1974).
[Crossref]

G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlen,” Optik 29, 577–585 (1969).

Schneider, G.

S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).

Shastri, S.D.

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Snigirev, A.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Snigireva, I.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Somogyi, A.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Susini, J.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Tennant, D. M.

M. Lu, D. M. Tennant, and C. Jacobsen, “Orientation dependence of linewidth variation in sub-50-nm Gaussian e-beam lithography and its correction,” J. Vac. Sci. Technol. B 24, 2881–2885 (2006).
[Crossref]

Trackhtenberg,

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Tucoulou, R.

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

Vartiainen, I.

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

Vaughan, G.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Vila-Comamala, J.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and Christian David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1) 175–184 (2011).
[Crossref] [PubMed]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

Vogt, S.

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

Vogt, U.

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 7643503 (2005).
[Crossref]

Wang, S.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

Werner, S.

S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).

Wojcik, M.

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

Wojcik, M. J.

M. J. Wojcik, D. C. Mancini, R. Divan, and L. E. Ocola, “X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold,” Microsyst. Technol., 1–6 (2014)

Woloschak, G.

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

Xu, S.

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Yun, W.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Yunkin, V.

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Zeng, X.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

Anal. Bioanal. Chem. (1)

E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors”, Anal. Bioanal. Chem. 400(6) 1637–1644 (2011).
[Crossref] [PubMed]

Atom. Data Nucl. Data (1)

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” Atom. Data Nucl. Data 54, 181–342 (1993).
[Crossref]

J. Cell Biochem. (1)

T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99(6) 1489–1502 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys.: Conf. Ser. (1)

S. Werner, S. Rehbein, P. Guttman, S. Heim, and G. Schneider, “Towards stacked zone plates,” J. Phys.: Conf. Ser. 186012079 (2009).

J. Struct. Biol. (1)

S. Bohic, M. Cotte, M. Salomé, B. Fayard, M. Kuehbacher, P. Cloetens, G. Martinez-Criado, R. Tucoulou, and J. Susini, “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Biol. 177(2) 248–258 (2012).
[Crossref]

J. Synchotron Rad. (1)

I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, and C. David, “High-efficiency zone-plate optics for multi-keV X-ray focusing,” J. Synchotron Rad. 21, 497–501 (2014).
[Crossref]

J. Synchrotron Rad. (2)

J. Vila-Comamala, M. Wojcik, A. Diaz, M. Guizar-Sicairos, C.M. Kewis, S. Wang, and C. David, “Angular spectrum simulation of X-ray focusing by Fresnel zone plates,” J. Synchrotron Rad. 20, 397–404 (2013).
[Crossref]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18(3) 442–446 (2011).
[Crossref]

J. Vac. Sci. Technol. B (2)

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B 252004 (2007)
[Crossref]

M. Lu, D. M. Tennant, and C. Jacobsen, “Orientation dependence of linewidth variation in sub-50-nm Gaussian e-beam lithography and its correction,” J. Vac. Sci. Technol. B 24, 2881–2885 (2006).
[Crossref]

Microelectron. Eng. (1)

E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M. Hertz, and A. Holmberg, “Platinum zone plates for hard X-ray applications,” Microelectron. Eng. 88(10) 3123–3126 (2011).

Nanotechnology (2)

J. Vila-Comamala, S. Gorelick, V. A. Guzenko, E. Färm, M. Ritala, and C. David, “Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography,” Nanotechnology 21(28) 285305 (2010).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21, 295303 (2010).
[Crossref] [PubMed]

Nature (1)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046) 1210–1213 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160 (1974).
[Crossref]

Opt. Express (2)

Optik (1)

G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlen,” Optik 29, 577–585 (1969).

Phys. Sta. Sol. (a) (1)

I. Snigireva, A. Snigirev, V. Kohn, V. Yunkin, M. Grigoriev, S. Kuznetsov, G. Vaughan, and M. Di Michiel, “Focusing high energy X-rays with stacked Fresnel zone plates,” Phys. Sta. Sol. (a) 2042817–2823, (2007).
[Crossref]

Proc. of SPIE (1)

J. Maser, B. Lai, W. Yun, S.D. Shastri, Z. Cai, W. Rodrigues, S. Xu, and Trackhtenberg, “Near-field stacking of zone plates for hard x-ray range,” Proc. of SPIE 4783, 74–81 (2002).
[Crossref]

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 7643503 (2005).
[Crossref]

Other (3)

D. Attwood and T. David, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 2000).

M. J. Wojcik, D. C. Mancini, R. Divan, and L. E. Ocola, “X-ray zone plates with 25 aspect ratio using a 2-μm-thick ultrananocrystalline diamond mold,” Microsyst. Technol., 1–6 (2014)

A.G. Michette, Optical Systems for Soft X Rays, (Plenum Press, 1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Plot of zone plate efficiency (isolines) versus zone plate thickness and X-ray energy. Calculated using efficiency calculation in [3] with constants in [17].
Fig. 2
Fig. 2 Plot of zone plate efficiency versus zone plate thickness at three different energies, matching the energies discussed under Results (table 1 and 2).
Fig. 3
Fig. 3 The ANL Z2-34 zone plate stacking apparatus. (a): Picture of the ANL Z2-34 zone plate stacking apparatus. Three in-house fabricated arrays of Fresnel zone plates are mounted on 200 μm thick diamond holders. For positioning of the setup at the beam line, zone plate arrays are initially moved apart as shown here. (b): A 3-D model of the Z2-34 precision alignment apparatus for intermediate-field stacking of three zone plates : (1) non-symmetric invar base structure; (2–4) zone plates; (5–7) CVD-diamond holders; (8) Z-stage; (9, 10) X-Y-stages; (11–13) X-Y-Z-stages; (14–16) linkage components. [D. Shu, J. Liu, S. C. Gleber, J. Vila-Comamala, B. Lai, J. Maser, C. Roehrig, M. J. Wojcik, and S. Vogt, U. S. Patent application in progress for ANL-IN-13-092.]
Fig. 4
Fig. 4 Picture of the ANL Z2-37 precision alignment apparatus for intermediate-field stacking of up to six zone plates. In-house fabricated arrays of Fresnel zone plates are mounted on diamond holders. The apparatus is shown as integrated to the microprobe setup. [D. Shu, J. Liu, S. C. Gleber, J. Vila-Comamala, B. Lai, J. Maser, C. Roehrig, M. J. Wojcik, and S. Vogt, U. S. Patent application in progress for ANL-IN-13-092]
Fig. 5
Fig. 5 SEM images of the in-house fabricated Fresnel zone plate used for the 300 μm separation distance in the stack of three FZPs. Zones were fabricated close to ideal duty cycle and consistent over the whole zone plate (a and b). The outer zones are visible in (c), and 800-nm-zone thickness is visible in (d).
Fig. 6
Fig. 6 Transmission images on the scintillator crystal showing the consecutive alignment of the three chips with arrays of FZPs. While all chips are already in the beam, matching upstream and center FZP get aligned first ((a)), centered towards the green dot indicating the reference point on the CCD. The central beam stop is also visible in this alignment. Then, the matching downstream FZP is moved into the line of stacked FZPs. Before final tweaking, the downstream FZP is only close to alignment, creating Moiré fringes ((b)).
Fig. 7
Fig. 7 Efficiency decrease due to misalignment at 11.8 keV, experimental (blue) and simulated (green) values. (a): Plot of the efficiency as a function of the lateral alignment of the stacked FZPs. The measurement was performed by moving the center FZP out of alignment in x direction. The step size is 10 nm in the region close to alignment and 50 nm in the region of more than 350 nm misalignment. (b): Plot of the efficiency as a function of the longitudinal alignment of the stacked FZPs. The measurement was performed by increasing the distance of the downstream FZP out of the optimum position for the intermediate field stacking of the 3 FZPs in steps of 50 μm.

Tables (2)

Tables Icon

Table 1 Theoretical (T) and measured (M) values for FZP efficiencies of single and stacked FZPs at two different incident energies, as well as single and combined structure height of FZPs and optimum FZP structure heights for both incident energies. FZPs are identified as upstream zone plate (USZP), center zone plate (CZP), and downstream zone plate (DSZP). For an evaluation of these values, the optimum structure height for a FZP for the respective incident energies as well as the (combined) structure height for single and stacked FZPs are given. Vertical focus size for 11.8 keV is given as FWHM of line scans over a chromium knife edge.

Tables Icon

Table 2 Theoretical (T) and measured (M) values for FZP efficiencies of single and stacked FZPs at 25 keV.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ < 1 3 d r n
p < 0.76 d r n 2 λ

Metrics