Abstract

Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 μm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  2. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40(9), 824–826 (1982).
    [Crossref]
  3. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  4. J. S. Preston, H. M. Van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter 40(6), 3942–3954 (1989).
  5. S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter 40(4), 2031–2041 (1989).
    [Crossref] [PubMed]
  6. J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
    [Crossref]
  7. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  8. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  9. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  10. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
    [Crossref] [PubMed]
  11. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  12. L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34(12), 1846–1848 (2009).
    [Crossref] [PubMed]
  13. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
    [Crossref] [PubMed]
  14. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
    [Crossref]
  15. F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
    [Crossref]
  16. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  17. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
    [Crossref]
  18. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [Crossref] [PubMed]
  19. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
    [Crossref]
  20. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
    [Crossref] [PubMed]
  21. A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
    [Crossref]
  22. J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
    [Crossref]
  23. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  24. S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).
  25. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
    [Crossref] [PubMed]
  26. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  27. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
    [Crossref]
  28. E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
    [Crossref]
  29. E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
    [Crossref]
  30. N. I. Zheludev, P. J. Bennett, H. Loh, S. V. Popov, I. R. Shatwell, Y. P. Svirko, V. E. Gusev, V. F. Kamalov, and E. V. Slobodchikov, “Cubic optical nonlinearity of free electrons in bulk gold,” Opt. Lett. 20(12), 1368–1370 (1995).
    [Crossref] [PubMed]
  31. P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
    [Crossref]
  32. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
    [Crossref]
  33. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
    [Crossref]
  34. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's Equations in isotropic media,” IEEE Tran. on Antennas and Propagation 14, 302–307 (1966). Here, a commercially available software developed by Rsoft Design Group ( http://www.rsoftdesign.com ) was used for the numerical simulation.
  35. SOPRA N&K Database, http://refractiveindex.info/legacy/?group=CRYSTALS&material=TiO2
  36. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
    [Crossref]
  37. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]

2013 (2)

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

2012 (2)

2011 (4)

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
[Crossref] [PubMed]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

2010 (1)

2009 (7)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34(12), 1846–1848 (2009).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

2008 (1)

2007 (1)

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

2006 (1)

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

2005 (3)

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[Crossref] [PubMed]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (1)

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

2003 (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (1)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

2000 (1)

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

1998 (1)

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

1995 (1)

1989 (2)

J. S. Preston, H. M. Van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter 40(6), 3942–3954 (1989).

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter 40(4), 2031–2041 (1989).
[Crossref] [PubMed]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

1982 (1)

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40(9), 824–826 (1982).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Adam, P.-M.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Anhut, T.

Bachelot, R.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Bennett, P. J.

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

N. I. Zheludev, P. J. Bennett, H. Loh, S. V. Popov, I. R. Shatwell, Y. P. Svirko, V. E. Gusev, V. F. Kamalov, and E. V. Slobodchikov, “Cubic optical nonlinearity of free electrons in bulk gold,” Opt. Lett. 20(12), 1368–1370 (1995).
[Crossref] [PubMed]

Billot, L.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Bock, M.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
[Crossref] [PubMed]

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

Bonse, J.

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Chen, A.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Clark, S. E.

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter 40(4), 2031–2041 (1989).
[Crossref] [PubMed]

Costache, F.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Dai, Q. F.

Das, S. K.

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
[Crossref] [PubMed]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Dong, Y.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Dorkenoo, K. D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Dörr, D.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Elsaesser, T.

Emel’yanov, V. I.

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Emmony, D. C.

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter 40(4), 2031–2041 (1989).
[Crossref] [PubMed]

Fauchet, P. M.

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40(9), 824–826 (1982).
[Crossref]

Feng, D. H.

Fort, A.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Gindre, D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Golosov, E. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Gopal, A. V.

Grand, J.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Grunwald, R.

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
[Crossref] [PubMed]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C.

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

Guo, C. L.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

Gurin, O. V.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

Gusev, V. E.

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Henyk, M.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Höhm, S.

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Hubert, C.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Ionin, A. A.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Jia, T. Q.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
[Crossref] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Jia, X.

Kamalov, V. F.

Kautek, W.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Kolobov, Yu. R.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

König, K.

Krüger, J.

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kudryashov, S. I.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lan, S.

Le Harzic, R.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[Crossref] [PubMed]

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Li, Y.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

Ligachev, A. E.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Liu, H. Y.

Loh, H.

Long, H.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

Lu, P.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

Lysak, T. M.

Makarov, S. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

Malinowski, A.

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

Miyaji, G.

Miyazaki, K.

Molian, P.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Namba, Y.

Nishii, K.

Novoselov, Yu. N.

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Pfuch, A.

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
[Crossref] [PubMed]

Popov, S. V.

Preston, J. S.

J. S. Preston, H. M. Van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter 40(6), 3942–3954 (1989).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

Qi, L.

Qiu, J. R.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
[Crossref] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Rainford, B. D.

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

Reif, J.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

Riemann, I.

Rosenfeld, A.

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Royer, P.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Sauer, D.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[Crossref] [PubMed]

Schmidt, D.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Schuck, H.

Schwanke, C.

Seeber, W.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011).
[Crossref] [PubMed]

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

Seleznev, L. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Shatwell, I. R.

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

N. I. Zheludev, P. J. Bennett, H. Loh, S. V. Popov, I. R. Shatwell, Y. P. Svirko, V. E. Gusev, V. F. Kamalov, and E. V. Slobodchikov, “Cubic optical nonlinearity of free electrons in bulk gold,” Opt. Lett. 20(12), 1368–1370 (1995).
[Crossref] [PubMed]

Siegman, A. E.

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40(9), 824–826 (1982).
[Crossref]

Sinitsyn, D. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Sipe, J. E.

J. S. Preston, H. M. Van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter 40(6), 3942–3954 (1989).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

Slobodchikov, E. V.

Steinmeyer, G.

Stracke, F.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

Sun, Z. R.

Svich, V. A.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

Svirko, Y. P.

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

N. I. Zheludev, P. J. Bennett, H. Loh, S. V. Popov, I. R. Shatwell, Y. P. Svirko, V. E. Gusev, V. F. Kamalov, and E. V. Slobodchikov, “Cubic optical nonlinearity of free electrons in bulk gold,” Opt. Lett. 20(12), 1368–1370 (1995).
[Crossref] [PubMed]

Topkov, A. N.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

Trofimov, V. A.

Van Driel, H. M.

J. S. Preston, H. M. Van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter 40(6), 3942–3954 (1989).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

Wang, J.

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

Wu, L. J.

Xiong, P. X.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z. Z.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
[Crossref] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Yang, G.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

Yao, J. W.

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zhang, C. Y.

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, Y.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zheludev, N. I.

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

N. I. Zheludev, P. J. Bennett, H. Loh, S. V. Popov, I. R. Shatwell, Y. P. Svirko, V. E. Gusev, V. F. Kamalov, and E. V. Slobodchikov, “Cubic optical nonlinearity of free electrons in bulk gold,” Opt. Lett. 20(12), 1368–1370 (1995).
[Crossref] [PubMed]

Zimmermann, H.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40(9), 824–826 (1982).
[Crossref]

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98(21), 211905 (2011).
[Crossref]

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. L. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett. 95(12), 121106 (2009).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process. 71(6), 657–665 (2000).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

Appl. Surf. Sci. (1)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002).
[Crossref]

J. Appl. Phys. (5)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

JETP Lett. (1)

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” JETP Lett. 90(2), 107–110 (2009).
[Crossref]

Laser Phys. Lett. (1)

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

Opt. Commun. (1)

P. J. Bennett, A. Malinowski, B. D. Rainford, I. R. Shatwell, Y. P. Svirko, and N. I. Zheludev, “Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel,” Opt. Commun. 147(1–3), 148–152 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (3)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Phys. Rev. B Condens. Matter (2)

J. S. Preston, H. M. Van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter 40(6), 3942–3954 (1989).

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter 40(4), 2031–2041 (1989).
[Crossref] [PubMed]

Proc. SPIE (1)

S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011).

Sov. Phys. JETP (1)

E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

Thin Solid Films (1)

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[Crossref]

Other (2)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's Equations in isotropic media,” IEEE Tran. on Antennas and Propagation 14, 302–307 (1966). Here, a commercially available software developed by Rsoft Design Group ( http://www.rsoftdesign.com ) was used for the numerical simulation.

SOPRA N&K Database, http://refractiveindex.info/legacy/?group=CRYSTALS&material=TiO2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Surface of a Ti foil irradiated with a fs laser light. (b) Formation of a thin TixOy layer which enhances significantly THG. (c) Formation of HSFLs with a period equal to one-third of the THG wavelength.

Fig. 2
Fig. 2

SEM images showing the formation of HSFLs with periods of ~100-140 nm by using fs laser light with different wavelengths (λ) and fluences (F). (a) λ = 1.4 μm, F = 0.96 J/cm2; (b) λ = 1.8 μm, F = 1.11 J/cm2; (c) λ = 2.0 μm, F = 1.27 J/cm2; (d) λ = 2.2 μm, F = 2.23 J/cm2. The average number of laser pulses irradiating on the excitation spot was 40. In all cases, the orientation of HSFLs is parallel to the polarization of the fs laser light.

Fig. 3
Fig. 3

Fourier transformations of the SEM images for the HSFLs shown in Fig. 2 along the direction perpendicular to the laser polarization for different ablation wavelengths. (a) λ = 1.4 μm, (b) λ = 1.8 μm, (c) λ = 2.0 μm, and (d) λ = 2.2 μm. The insets show the two-dimensional Fourier transformations of the SEM images.

Fig. 4
Fig. 4

SEM images showing the formation of LSFLs by using fs laser light with different wavelengths (λ) and fluences (F). (a) λ = 1.4 μm, F = 1.11 J/cm2; (b) λ = 1.8 μm, F = 1.27 J/cm2; (c) λ = 2.0 μm, F = 1.59 J/cm2; (d) λ = 2.2 μm, F = 2.39 J/cm2. The average number of laser pulses irradiating on the excitation spot was 40. In all cases, the orientation of LSFLs is perpendicular to the polarization of the fs laser light.

Fig. 5
Fig. 5

(a) AFM image for a typical HSFL. (b) Section graph along the straight line in the AFM image showing the height or depth of the HSFL.

Fig. 6
Fig. 6

(a) The SEM image of a selected area of the HSFL in which the EDS measurement was carried out on a ridge of the HSFL, as indicated by the arrow. (b) The EDS spectrum obtained on the ridge of the HSFL as indicated in (a). (c) The enlarged spectrum shown in (b) at the low-energy region. (d) The line scanning of the Kα signal of O showing the periodic variation of the O content along the straight line. The arrows indicate the correspondence between the peaks of the O content and the ridges of the HSFL. (e) The SEM image of a selected area of the HSFL in which the EDS measurement was carried out on a groove of the HSFL, as indicated by the arrow. (f) The EDS spectrum obtained on the groove of the HSFL as indicated in (e). (g) The enlarged spectrum shown in (f) at the low-energy region. (h) The EDS spectrum obtained on a fresh Ti surface with an area of ~2.0 × 1.5 μm2. The inset shows the SEM image of the Ti surface. The acceleration voltage used in the EDS measurements mentioned above was 10 kV.

Fig. 7
Fig. 7

(a) Nonlinear optical response spectra measured at different excitation intensities. (b) Dependence of the THG intensity on the polarization direction of the polarizer placed in front of the spectrometer. The wavelength of the fs laser light was chosen to be 1.4 μm in both cases.

Fig. 8
Fig. 8

EDS measurement result obtained on an area of 1.0 × 1.0 μm2 located at the center of the excitation spot after the THG measurements under laser fluences lower than the ablation threshold. The inset shows the morphology of the central area where the THG measurements were carried out. The square indicates the area on which the EDS measurement was performed.

Fig. 9
Fig. 9

Evolution of the reflection spectrum (a) and electric filed intensity distribution at the ablation wavelength of 1.4 μm (b) and the THG wavelength of 0.467 μm (c) with increasing thickness of the thin TiO2 layer. A nonuniform grid was employed in the numerical simulation and the TiO2 was divided into 10 segments. The arrows in (a) indicate the changes in the reflection at the THG wavelengths when the ablation wavelengths were chosen to be 1.4, 1.8, 2.0, and 2.2 μm.

Fig. 10
Fig. 10

Dependence of efficacy factor η on normalized wavevector κ (κx and κy) calculated at both the THG wavelength of 0.667 μm for Ti (a) and TiO2 (b) and the fundamental wavelength of 2.0 μm for Ti (c) and TiO2 (d) by using the efficacy factor theory [3,22,37].

Fig. 11
Fig. 11

Dependence of efficacy factor η on normalized wavevector κx (κy = 0) and κy (κx = 0) calculated at both the THG wavelength of 0.667 μm ((a) and (b)) and the fundamental wavelength of 2.0 μm ((c) and (d)) for Ti and TiO2.

Metrics