Abstract

While modern multi-detector sensors offer a much improved image resolution and signal-to-noise ratio among other performance benefits, the multi-detector arrangement gives rise to striping in satellite imagery due to various sources, which cannot be perfectly corrected by sensor calibration. Recently, Bouali and Ignatov (2014) [J. Atmos. Oceanic Technol., 31, 150–163 (2014)] introduced a new approach to remove relatively small detector performance-related striping from thermal infrared bands for improved sea surface temperature data. We show that this methodology, with appropriately chosen parameters and adjustments, can also be applied to remove striping of a much larger variance from the solar reflective band data. Specifically, we modify and apply this new approach to remove striping from satellite-derived normalized water-leaving radiance spectra nLw(λ) obtained from solar reflective bands. It is important that the destriping approach not be applied to the top-of-atmosphere radiances. The results show a significant improvement in image quality for both nLw(λ) spectra and nLw(λ)-derived ocean biological and biogeochemical products such as chlorophyll-a concentration, and the water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing

Lide Jiang and Menghua Wang
Opt. Express 22(18) 21657-21678 (2014)

Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing

Menghua Wang, Wei Shi, Lide Jiang, Xiaoming Liu, SeungHyun Son, and Kenneth Voss
Opt. Express 23(11) 14446-14460 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Bouali and A. Ignatov, “Adaptive reduction of striping for improved sea surface temperature imagery from Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS),” J. Atmos. Ocean. Technol. 31(1), 150–163 (2014).
    [Crossref]
  2. X. Geng, A. Angal, J. Sun, A. Wu, T. Choi, and X. Xiong, “Characterization of MODIS mirror side difference in the reflective solar spectral region,” presented at Proc. SPIE 8153, Earth Observing Systems XVI 2011.
    [Crossref]
  3. Q. Liu, C. Cao, and F. Weng, “Striping in the Suomi NPP VIIRS thermal bands through anisotropic surface reflection,” J. Atmos. Ocean. Technol. 30(10), 2478–2487 (2013).
    [Crossref]
  4. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  5. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  6. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [Crossref] [PubMed]
  7. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [Crossref] [PubMed]
  8. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
    [Crossref] [PubMed]
  9. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
    [Crossref] [PubMed]
  10. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
    [Crossref]
  11. C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
    [Crossref]
  12. Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
    [Crossref]
  13. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
    [Crossref]
  14. M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
    [Crossref]
  15. I. M. Belkin and J. E. O’Reilly, “An algorithm for oceanic front detection in chlorophyll and SST satellite imagery,” J. Mar. Syst. 78(3), 319–326 (2009).
    [Crossref]
  16. P. Bhat, B. Curless, M. Cohen, and L. Zitnick, “Fourier analysis of the 2D screened Poisson equation for gradient domain problems”. in Computer Vision - ECCV2008: 10th European Conference on Computer Vision; Part II, D. Forsyth, P. Torr, and A. Zisserman, eds., Lecture Notes in Computer Science, Vol. 5303, (Springer, 2008), pp. 114–128.
    [Crossref]
  17. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
    [Crossref] [PubMed]
  18. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
    [Crossref]
  19. M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
    [Crossref]
  20. S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
    [Crossref]

2014 (1)

M. Bouali and A. Ignatov, “Adaptive reduction of striping for improved sea surface temperature imagery from Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS),” J. Atmos. Ocean. Technol. 31(1), 150–163 (2014).
[Crossref]

2013 (3)

Q. Liu, C. Cao, and F. Weng, “Striping in the Suomi NPP VIIRS thermal bands through anisotropic surface reflection,” J. Atmos. Ocean. Technol. 30(10), 2478–2487 (2013).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

2012 (1)

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

2009 (4)

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

I. M. Belkin and J. E. O’Reilly, “An algorithm for oceanic front detection in chlorophyll and SST satellite imagery,” J. Mar. Syst. 78(3), 319–326 (2009).
[Crossref]

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

2007 (2)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[Crossref] [PubMed]

1998 (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

1996 (1)

1994 (1)

Ahmed, S.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Arnone, R.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Belkin, I. M.

I. M. Belkin and J. E. O’Reilly, “An algorithm for oceanic front detection in chlorophyll and SST satellite imagery,” J. Mar. Syst. 78(3), 319–326 (2009).
[Crossref]

Bouali, M.

M. Bouali and A. Ignatov, “Adaptive reduction of striping for improved sea surface temperature imagery from Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS),” J. Atmos. Ocean. Technol. 31(1), 150–163 (2014).
[Crossref]

Cao, C.

Q. Liu, C. Cao, and F. Weng, “Striping in the Suomi NPP VIIRS thermal bands through anisotropic surface reflection,” J. Atmos. Ocean. Technol. 30(10), 2478–2487 (2013).
[Crossref]

Carder, K.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

Carder, K. L.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Darecki, M.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

Davis, C.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

Foster, R.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Franz, B. A.

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

Gilerson, A.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Gordon, H. R.

Harding, J. L. W.

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

Harmel, T.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Hlaing, S.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Hu, C.

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Ignatov, A.

M. Bouali and A. Ignatov, “Adaptive reduction of striping for improved sea surface temperature imagery from Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS),” J. Atmos. Ocean. Technol. 31(1), 150–163 (2014).
[Crossref]

Jiang, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Lee, Z.

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

Lee, Z. P.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

Liu, Q.

Q. Liu, C. Cao, and F. Weng, “Striping in the Suomi NPP VIIRS thermal bands through anisotropic surface reflection,” J. Atmos. Ocean. Technol. 30(10), 2478–2487 (2013).
[Crossref]

Liu, X.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Maritorena, S.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

McClain, C. R.

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

O’Reilly, J. E.

I. M. Belkin and J. E. O’Reilly, “An algorithm for oceanic front detection in chlorophyll and SST satellite imagery,” J. Mar. Syst. 78(3), 319–326 (2009).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Rausch, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Rhea, W.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

Shi, W.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Son, S.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

Stramski, D.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

Tan, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Voss, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Wang, M.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

Weidemann, A.

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Weng, F.

Q. Liu, C. Cao, and F. Weng, “Striping in the Suomi NPP VIIRS thermal bands through anisotropic surface reflection,” J. Atmos. Ocean. Technol. 30(10), 2478–2487 (2013).
[Crossref]

Werdell, P. J.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Annu. Rev. Mar. Sci. (1)

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

Appl. Opt. (5)

J. Atmos. Ocean. Technol. (2)

M. Bouali and A. Ignatov, “Adaptive reduction of striping for improved sea surface temperature imagery from Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS),” J. Atmos. Ocean. Technol. 31(1), 150–163 (2014).
[Crossref]

Q. Liu, C. Cao, and F. Weng, “Striping in the Suomi NPP VIIRS thermal bands through anisotropic surface reflection,” J. Atmos. Ocean. Technol. 30(10), 2478–2487 (2013).
[Crossref]

J. Geophys. Res. (4)

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005), doi:.
[Crossref]

J. Geophys. Res. Atmos. (1)

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

J. Mar. Syst. (1)

I. M. Belkin and J. E. O’Reilly, “An algorithm for oceanic front detection in chlorophyll and SST satellite imagery,” J. Mar. Syst. 78(3), 319–326 (2009).
[Crossref]

Remote Sens. Environ. (3)

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

S. Hlaing, T. Harmel, A. Gilerson, R. Foster, A. Weidemann, R. Arnone, M. Wang, and S. Ahmed, “Evaluation of the VIIRS ocean color monitoring performance in coastal regions,” Remote Sens. Environ. 139, 398–414 (2013).
[Crossref]

Other (3)

P. Bhat, B. Curless, M. Cohen, and L. Zitnick, “Fourier analysis of the 2D screened Poisson equation for gradient domain problems”. in Computer Vision - ECCV2008: 10th European Conference on Computer Vision; Part II, D. Forsyth, P. Torr, and A. Zisserman, eds., Lecture Notes in Computer Science, Vol. 5303, (Springer, 2008), pp. 114–128.
[Crossref]

X. Geng, A. Angal, J. Sun, A. Wu, T. Choi, and X. Xiong, “Characterization of MODIS mirror side difference in the reflective solar spectral region,” presented at Proc. SPIE 8153, Earth Observing Systems XVI 2011.
[Crossref]

IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Destriping of ocean color products nLw(671) (upper panels: (a)–(c)) and chlorophyll-a concentration (lower panels: (d)–(f)) obtained by VIIRS-SNPP on July 16, 2013 around 17:38 UTC near (36°S, 55°W). The original data are shown in panels (b) and (e), while the destriped data are shown in panels (c) and (f). The values along the black line in panel (b) are plotted in panels (a) and (d) with black lines from original images (panels (b) and (e)) and red lines from destriped images (panels (c) and (f)).
Fig. 2
Fig. 2 Destriping of ocean color products nLw(412) (upper panels: (a)–(c)) and Chl-a concentration (lower panels: (d)–(f)) obtained by MODIS-Aqua on December 3, 2013 at around 05:05 UTC near (26°N, 123°E). The original data are shown in panels (b) and (e), while the destriped data are shown in panels (c) and (f). The values along the black line in panel (b) are plotted in panels (a) and (d) with black lines from original images (panels (b) and (e)) and red lines from destriped images (panels (c) and (f)).
Fig. 3
Fig. 3 Destriping of ocean color products nLw(412) (upper panels: (a)–(c)) and diffuse attenuation coefficient Kd(490) (lower panels: (d)–(f)) obtained from VIIRS-SNPP on April 19, 2014 at around 21:20 UTC near (13°S, 114°W). The original data are shown in panels (b) and (e), while the destriped data are shown in panels (c) and (f). The values along the black line in panel (b) are plotted in panels (a) and (d) with black lines from original images (panels (b) and (e)) and red lines from destriped images (panels (c) and (f)).
Fig. 4
Fig. 4 A typical histogram of the absolute values of gradients of the normalized water-leaving radiance derived from VIIRS band M1 (center wavelength 410 nm), along and across the scan direction.
Fig. 5
Fig. 5 A flowchart of the destriping algorithm.
Fig. 6
Fig. 6 Comparison of histograms of deviations from 9 × 9 box average for nLw(443), calculated over a set of 62 in 85-second VIIRS data granules, taken over the South Pacific during January 2014.
Fig. 7
Fig. 7 Mapped images of Chl-a derived from VIIRS-SNPP, obtained on May 23, 2014 at 19:12 UTC near (26°N, 84°W): (a) the original image; (b) destriped image without filling bow-tie areas before destriping; (c) fully destriped image obtained by filling the trimmed scans in bow-tie area before destriping.

Tables (3)

Tables Icon

Table 1 Parameters Used to Destripe nLw(λ) Data Obtained from VIIRS-SNPP for 7 Moderate-resolution Visible and Near-infrared Bands

Tables Icon

Table 2 Parameters Used to Destripe nLw(λ) Data Obtained from MODIS-Aqua for 13 Visible and Near-infrared Bands

Tables Icon

Table 3 Statistics Obtained before and after Destriping Is Applied, All Units in mW·cm−2·μm−1·sr−1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D = min [ α D 0 . 9 9 , D m a x ] ,
M ( x , y ) = { 1 , | f ( x + 1 , y ) f ( x , y ) | > D x | f ( x , y + 1 ) f ( x , y ) | > D y ( x , y ) ( land, ice, clouds ) 0 , otherwise ,
L ( x , y ) = f ( x 1 , y ) 2 f ( x , y ) + f ( x + 1 , y ) + M ( x , y ) [ f ( x , y + 1 ) f ( x , y ) ] + M ( x , y 1 ) [ f ( x , y 1 ) f ( x , y ) ] .
L ( x , y ) = u ( x 1 , y ) + u ( x + 1 , y ) + u ( x , y 1 ) + u ( x , y + 1 ) 4 u ( x , y ) .
L ( k x , k y ) = [ 2 cos ( π k x / N x ) + 2 cos ( π k y / N y ) 4 ] u ( k x , k y ) ,
p ( x , y ) = z = y H / 2 z = y + H / 2 r ( x , z ) exp { [ r ( x , y ) r ( x , z ) ] 2 2 σ 2 } / z = y H / 2 z = y + H / 2 exp { [ r ( x , y ) r ( x , z ) ] 2 2 σ 2 } ,
Δ r = ( x , y ) M ( x , y ) = 0 { z = y H / 2 z = y + H / 2 [ r ( x , y ) r ( x , z ) ] } / ( x , y ) M ( x , y ) = 0 H
σ = min [ β σ 0 , σ m a x ] ,

Metrics