Abstract

We report on a detailed model of an improved three mirror off-axis integrated cavity output spectroscopy (OA-ICOS) setup, which re-injects the light reflected by the optical cavity. The model simulates the impact of design parameters on instrument sensitivity and can be used for any off-axis configuration. We demonstrate the application of this model for the real-time detection of ethylene with a pulsed quantum cascade laser (QCL). The three mirror OA-ICOS scheme provides a 10 times increase in signal-to-noise ratio as compared to standard OA-ICOS, resulting in a noise equivalent absorption sensitivity of 1.5 x 10−8 cm−1 Hz-1/2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intensity enhancement in off-axis integrated cavity output spectroscopy

Faisal Nadeem, Julien Mandon, Simona M. Cristescu, and Frans J. M. Harren
Appl. Opt. 57(29) 8536-8542 (2018)

Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with radio frequency white noise for gas sensing

Jingjing Wang, Xing Tian, Yang Dong, Gongdong Zhu, Jiajin Chen, Tu Tan, Kun Liu, Weidong Chen, and Xiaoming Gao
Opt. Express 27(21) 30517-30529 (2019)

Experimental-based comparison between off-axis integrated cavity output spectroscopy and multipass-assisted wavelength modulation spectroscopy at 7.7 µm

Faisal Nadeem, Julien Mandon, Simona M. Cristescu, Amir Khodabakhsh, and Frans J. M. Harren
OSA Continuum 2(9) 2667-2682 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
    [Crossref]
  2. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
    [Crossref]
  3. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
    [Crossref]
  4. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
    [Crossref] [PubMed]
  5. G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
    [Crossref] [PubMed]
  6. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3(4), 523–526 (1964).
    [Crossref]
  7. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
    [Crossref] [PubMed]
  8. E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
    [Crossref]
  9. Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
    [Crossref]
  10. P. Sturm and A. Knohl, “Water vapor δ 2 H and δ 18 O measurements using off-axis integrated cavity output spectroscopy,” Atmospheric Measurement Techniques 3(1), 67–77 (2010).
    [Crossref]
  11. D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
    [Crossref]
  12. M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
    [Crossref]
  13. R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
    [Crossref]
  14. D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
    [Crossref] [PubMed]
  15. E. Hecht, “Optics, 4th,” International edition, Addison-Wesley, San Francisco (2002).
  16. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
    [Crossref]
  17. C. Dyroff, “Optimum signal-to-noise ratio in off-axis integrated cavity output spectroscopy,” Opt. Lett. 36(7), 1110–1112 (2011).
    [Crossref] [PubMed]

2014 (1)

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
[Crossref]

2013 (1)

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

2011 (1)

2010 (1)

P. Sturm and A. Knohl, “Water vapor δ 2 H and δ 18 O measurements using off-axis integrated cavity output spectroscopy,” Atmospheric Measurement Techniques 3(1), 67–77 (2010).
[Crossref]

2009 (1)

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

2008 (1)

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

2006 (2)

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

2005 (1)

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

2004 (1)

2002 (1)

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

2001 (1)

1999 (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

1998 (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[Crossref]

1964 (1)

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[Crossref]

Allen, M.

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

Allen, N.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Allen, N. T.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Anderson, J.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Anderson, J. G.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[Crossref] [PubMed]

Baer, D. S.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

Bakhirkin, Y. A.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[Crossref] [PubMed]

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Centeno, R.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
[Crossref]

Clair, J. S.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Cristescu, S.

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

Cristescu, S. M.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
[Crossref]

Curl, R.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Curl, R. F.

Demusz, J. N.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Drisdell, W. S.

Dyroff, C.

Engel, G.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Engel, G. S.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Faist, J.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Giovannini, M.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Greenberg, M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Gupta, M.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

Hanisco, T. F.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Harren, F.

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

Harren, F. J. M.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
[Crossref]

Herriott, D.

Hvozdara, L.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Keutsch, F.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Keutsch, F. N.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

Knohl, A.

P. Sturm and A. Knohl, “Water vapor δ 2 H and δ 18 O measurements using off-axis integrated cavity output spectroscopy,” Atmospheric Measurement Techniques 3(1), 67–77 (2010).
[Crossref]

Kogelnik, H.

Kompfner, R.

Kosterev, A.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Kosterev, A. A.

Kroll, J.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Kroll, J. H.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Lapson, L.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[Crossref] [PubMed]

Mandon, J.

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
[Crossref]

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

Marchenko, D.

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

Martin, T.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Merkus, P.

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

Moyer, E.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Moyer, E. J.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006).
[Crossref] [PubMed]

O’Brien, A.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

O’Keefe, A.

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Paul, J. B.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[Crossref] [PubMed]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Rivero, M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Roller, C.

Rosen, D.

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

Sayres, D.

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Sayres, D. S.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Silva, M.

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

Sonnenfroh, D.

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

St Clair, J. M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Sturm, P.

P. Sturm and A. Knohl, “Water vapor δ 2 H and δ 18 O measurements using off-axis integrated cavity output spectroscopy,” Atmospheric Measurement Techniques 3(1), 67–77 (2010).
[Crossref]

Tittel, F.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Tittel, F. K.

Tuozzolo, C.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

Yarekha, D.

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (5)

E. Moyer, D. Sayres, G. Engel, J. S. Clair, F. Keutsch, N. Allen, J. Kroll, and J. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Y. A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82(1), 149–154 (2006).
[Crossref]

D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, and F. Harren, “Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide,” Appl. Phys. B 111(3), 359–365 (2013).
[Crossref]

M. Silva, D. Sonnenfroh, D. Rosen, M. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005).
[Crossref]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

Atmospheric Measurement Techniques (1)

P. Sturm and A. Knohl, “Water vapor δ 2 H and δ 18 O measurements using off-axis integrated cavity output spectroscopy,” Atmospheric Measurement Techniques 3(1), 67–77 (2010).
[Crossref]

Chem. Phys. Lett. (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966).
[Crossref]

Rev. Sci. Instrum. (2)

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80(4), 044102 (2009).
[Crossref] [PubMed]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Sens. Actuators B Chem. (1)

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser,” Sens. Actuators B Chem. 203, 311–319 (2014).
[Crossref]

Other (1)

E. Hecht, “Optics, 4th,” International edition, Addison-Wesley, San Francisco (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Panel a: Geometric relations for the re-injection model. αy and αx represent the angles of the laser beam with the y- and x-axis, respectively. Red dots indicate a typical elliptical spot pattern on the mirror. Panel b: Schematic of the steps during the ray trace calculations. Panel c: Experimental setup. QCL: quantum cascade laser; L1, L2: focusing and collimating lens, respectively; PVI-4TE detector: four stages thermoelectrically cooled detector.
Fig. 2
Fig. 2 Angular distribution of cavity transmission power (shown in color) without re-injection mirror (panel a) and with it for d/R = 0.2 (panel b) for an off-axis radius of ρ = 24 mm.
Fig. 3
Fig. 3 Simulated and experimental data. Panel a: Ratio of measured SNR (symbols, left axis) and calculated transmission power (dashed lines, right axis) versus off-axis radius at optimum angles for various d/R ratios. Panel b: Simulated power enhancement versus reflectivity of the re-injection mirror for the same d/R ratios.
Fig. 4
Fig. 4 (a) Absorption spectra of 200 ppbv ethylene at 100 mbar measured with the re-injection mirror (upper curve, red) and without (lower curve, black). (b) Comparison of Allan deviations to determine the detection limit as a function of the integration time. Regular OA-ICOS reached a minimum detection limit of 183 ppbv within 128 s acquisition time (black squares). With the optical enhancement, a detection limit of 18 ppbv in 32 s was obtained (red triangles).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s 1 = T ( d ) · s 0
s 2 = T ( n ) · T ( t ) · T ( n ) · s 1
s 3 = T ( R 2 ) · T ( L ) · T ( R 3 ) · T ( L ) · s 2
s 4 = T ( R 1 ) · T ( d ) · T ( n ) · T ( t ) · T ( - R 2 ) · T ( t ) · T ( n ) · s 1

Metrics