Abstract

We report on the development of a high-resolution see-through integral imaging system with a resolution and fill factor-enhanced lens-array holographic optical element (HOE). We propose a procedure for fabricating of a lens pitch controllable lens-array HOE. By controlling the recording plane and performing repetitive recordings process, the lens pitch of the lens-array HOE could be substantially reduced, with a high fill factor and the same numerical aperture compared to the reference lens-array. We demonstrated the feasibility by fabricating a lens-array HOE with a 500 micrometer pitch. Since the pixel pitch of the projected image can be easily controlled in projection type integral imaging, the small lens pitch enhances the quality of the displayed 3D image very effectively. The enhancement of visibility of the 3D images is verified in experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]

Changwon Jang, Chang-Kun Lee, Jinsoo Jeong, Gang Li, Seungjae Lee, Jiwoon Yeom, Keehoon Hong, and Byoungho Lee
Appl. Opt. 55(3) A71-A85 (2016)

Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements

Keehoon Hong, Jiwoon Yeom, Changwon Jang, Gang Li, Jisoo Hong, and Byoungho Lee
Opt. Express 22(12) 14363-14374 (2014)

High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element

Huan Deng, Cong Chen, Min-Yang He, Jiao-Jiao Li, Han-Le Zhang, and Qiong-Hua Wang
J. Opt. Soc. Am. A 36(4) 588-593 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photograhie integrale,” CR Acad. Sci. 146, 446–451 (1908).
  2. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  3. S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
    [Crossref]
  4. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  5. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
    [Crossref] [PubMed]
  6. J. S. Jang and B. Javidi, “Depth and lateral size control of three-dimensional images in projection integral imaging,” Opt. Express 12(16), 3778–3790 (2004).
    [Crossref] [PubMed]
  7. M. A. Alam, M. L. Piao, T. Bang, and N. Kim, “Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method,” Appl. Opt. 52(28), 6969–6978 (2013).
    [Crossref] [PubMed]
  8. J. S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12(4), 557–563 (2004).
    [Crossref] [PubMed]
  9. Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50(7), B18–B24 (2011).
    [Crossref] [PubMed]
  10. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45(36), 9132–9139 (2006).
    [Crossref] [PubMed]
  11. H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44(3), 305–315 (2005).
    [Crossref] [PubMed]
  12. J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
    [Crossref]
  13. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [Crossref] [PubMed]
  14. M.-H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
    [Crossref]
  15. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
    [Crossref] [PubMed]
  16. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  17. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  18. S.-G. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea 14(2), 121–126 (2010).
    [Crossref]
  19. I. Biederman, “Recognition-by-components: a theory of human image understanding,” Psychol. Rev. 94(2), 115–117 (1987).
    [Crossref] [PubMed]
  20. M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
    [Crossref] [PubMed]
  21. K. Hong, J. Yeom, C. Jang, G. Li, J. Hong, and B. Lee, “Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements,” Opt. Express 22(12), 14363–14374 (2014).
    [Crossref] [PubMed]
  22. J. Yeom, K. Hong, Y. Jeong, C. Jang, and B. Lee, “Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements,” Opt. Express 22(11), 13659–13670 (2014).
    [Crossref] [PubMed]
  23. F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
    [Crossref]
  24. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).
  25. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]

2014 (4)

2013 (2)

2011 (1)

2010 (2)

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

S.-G. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea 14(2), 121–126 (2010).
[Crossref]

2009 (4)

2006 (1)

2005 (1)

2004 (3)

2002 (1)

M.-H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

1998 (1)

M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
[Crossref] [PubMed]

1988 (1)

1987 (1)

I. Biederman, “Recognition-by-components: a theory of human image understanding,” Psychol. Rev. 94(2), 115–117 (1987).
[Crossref] [PubMed]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

1908 (1)

G. Lippmann, “La photograhie integrale,” CR Acad. Sci. 146, 446–451 (1908).

Alam, M. A.

Albero, J.

Arai, J.

Bang, T.

Biederman, I.

I. Biederman, “Recognition-by-components: a theory of human image understanding,” Psychol. Rev. 94(2), 115–117 (1987).
[Crossref] [PubMed]

Bruder, F. K.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Chen, N.

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

Cho, S.-W.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Choi, H.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Chokshi, T. V.

Chronis, N.

Connell, G. A. N.

Deuber, F.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Dohi, T.

Fäcke, T.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Gauthier, I.

M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
[Crossref] [PubMed]

Gomez, V.

Gorecki, C.

Hagen, R.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Hata, N.

Hayward, W. G.

M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
[Crossref] [PubMed]

Hönel, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Hong, J.

Hong, J.-Y.

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

Hong, K.

Iwahara, M.

Jang, C.

Jang, J. S.

Javidi, B.

Jeong, Y.

Jurbergs, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Kim, J.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Kim, N.

Kim, Y.

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50(7), B18–B24 (2011).
[Crossref] [PubMed]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Koike, T.

Lee, B.

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
[Crossref] [PubMed]

K. Hong, J. Yeom, C. Jang, G. Li, J. Hong, and B. Lee, “Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements,” Opt. Express 22(12), 14363–14374 (2014).
[Crossref] [PubMed]

J. Yeom, K. Hong, Y. Jeong, C. Jang, and B. Lee, “Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements,” Opt. Express 22(11), 13659–13670 (2014).
[Crossref] [PubMed]

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50(7), B18–B24 (2011).
[Crossref] [PubMed]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[Crossref] [PubMed]

Li, G.

Liao, H.

Lippmann, G.

G. Lippmann, “La photograhie integrale,” CR Acad. Sci. 146, 446–451 (1908).

Min, S.-W.

Nieradko, L.

Nojiri, Y.

Oh, Y.-S.

Okano, F.

Okui, M.

Ottevaere, H.

Päivänranta, B.

Park, C.

M.-H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Park, G.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Park, J.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Park, J.-H.

Park, S.-G.

Passilly, N.

Piao, M. L.

Pietarinen, J.

Popovic, Z. D.

Rölle, T.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Sakuma, I.

Song, B.-S.

Sprague, R. A.

Tarr, M. J.

M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
[Crossref] [PubMed]

Thienpont, H.

Tripathi, A.

Weiser, M. S.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Whitesides, G. M.

M.-H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Williams, P.

M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
[Crossref] [PubMed]

Wu, M.-H.

M.-H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Yeom, J.

Appl. Opt. (6)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

CR Acad. Sci. (1)

G. Lippmann, “La photograhie integrale,” CR Acad. Sci. 146, 446–451 (1908).

J. Inf. Disp. (1)

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

J. Opt. Soc. Korea (1)

J. Soc. Inf. Disp. (1)

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17(5), 411–418 (2009).
[Crossref]

Langmuir (1)

M.-H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Nat. Neurosci. (1)

M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1(4), 275–277 (1998).
[Crossref] [PubMed]

Opt. Express (7)

A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
[Crossref] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[Crossref] [PubMed]

J. S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12(4), 557–563 (2004).
[Crossref] [PubMed]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
[Crossref] [PubMed]

J. S. Jang and B. Javidi, “Depth and lateral size control of three-dimensional images in projection integral imaging,” Opt. Express 12(16), 3778–3790 (2004).
[Crossref] [PubMed]

J. Yeom, K. Hong, Y. Jeong, C. Jang, and B. Lee, “Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements,” Opt. Express 22(11), 13659–13670 (2014).
[Crossref] [PubMed]

K. Hong, J. Yeom, C. Jang, G. Li, J. Hong, and B. Lee, “Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements,” Opt. Express 22(12), 14363–14374 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (1)

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Psychol. Rev. (1)

I. Biederman, “Recognition-by-components: a theory of human image understanding,” Psychol. Rev. 94(2), 115–117 (1987).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).

Supplementary Material (1)

» Media 1: MOV (1671 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of previous lens-array HOE fabricating method and (b) reconstruction scheme of lens-array HOE.
Fig. 2
Fig. 2 Schematic diagram of recording plane manipulation method: (a) set the recording distance and (b) repeat the recording process after shifting the photopolymer laterally.
Fig. 3
Fig. 3 Simulated recorded wavefront at the recording distance.
Fig. 4
Fig. 4 Complex wavefronts and recording fill factors, varying the recording distance: (a) at z = f/5, (b) z = f/2, (c) z = 2f/3 and (d) z = 3f/4.
Fig. 5
Fig. 5 The experimental setup for recording the proposed lens-array HOE.
Fig. 6
Fig. 6 Captured images at the focused plane of lens-array HOE fabricated by (a) previous method and (b) proposed method, which have focal lengths of 1 mm and 500 μm, respectively.
Fig. 7
Fig. 7 Captured images of HOEs fabricated by (a) previous method and (b) proposed method with diffuser located behind.
Fig. 8
Fig. 8 Captured image of display structure for display experiment.
Fig. 9
Fig. 9 Displayed 3D images with background object using a lens-array HOE made by (a) the previous method and (b) the proposed method. (c) Elemental image used in display experiment of part (a). (d) Elemental image used in display experiment of part (b).
Fig. 10
Fig. 10 Generated 3D images using the proposed lens-array HOE captured at different view positions (Media 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

u ( x , y ) = r e c t [ x p ] r e c t [ y p ] exp [ j π λ f ( x 2 + y 2 ) ] ,
u 2 ( x , y ) = F T 2 1 { F T 2 { r e c t [ x p ] r e c t [ y p ] exp [ j π λ f ( x 2 + y 2 ) ] } exp [ j π λ z ( f X 2 + f Y 2 ) ] } .
RFF(%) = 100 × ( 1 z f ) 2 .

Metrics