Abstract

We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multidimensional mode-separable frequency conversion for high-speed quantum communication

Paritosh Manurkar, Nitin Jain, Michael Silver, Yu-Ping Huang, Carsten Langrock, Martin M. Fejer, Prem Kumar, and Gregory S. Kanter
Optica 3(12) 1300-1307 (2016)

Near quantum-limited, single-shot coherent arbitrary optical waveform measurements

Nicolas K. Fontaine, Ryan P. Scott, Jonathan P. Heritage, and S. J. B. Yoo
Opt. Express 17(15) 12332-12344 (2009)

Dynamic optical arbitrary waveform generation and measurement

Ryan P. Scott, Nicolas K. Fontaine, Jonathan P. Heritage, and S. J. B. Yoo
Opt. Express 18(18) 18655-18670 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
    [Crossref]
  2. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
    [Crossref]
  3. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  4. A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
    [Crossref] [PubMed]
  5. Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
    [Crossref] [PubMed]
  6. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat Photon 4, 760–766 (2010).
    [Crossref]
  7. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
    [Crossref]
  8. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
    [Crossref] [PubMed]
  9. D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
    [Crossref]
  10. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Reports 374, 385 (2003).
    [Crossref]
  11. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
    [Crossref] [PubMed]
  12. J. Palací, A. Bockelt, and B. Vidal, “Terahertz radiation shaping based on optical spectrum modulation in the time domain,” Opt. Express 20, 23117–23125 (2012).
    [Crossref] [PubMed]
  13. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
    [Crossref] [PubMed]
  14. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  16. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [Crossref] [PubMed]
  17. B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).
  18. D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
    [Crossref] [PubMed]
  19. Y.-P. Huang and P. Kumar, “Mode-resolved photon counting via cascaded quantum frequency conversion,” Opt. Lett. 38, 468–470 (2013).
    [Crossref] [PubMed]
  20. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum Optical Waveform Conversion,” Phys. Rev. Lett. 106, 130501 (2011).
    [Crossref] [PubMed]
  21. J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
    [Crossref]
  22. M. Vasilyev and P. Kumar, “Frequency up-conversion of quantum images,” Opt. Express 20, 6644–6656 (2012).
    [Crossref] [PubMed]
  23. J. Shapiro, “The quantum theory of optical communications,” IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569 (2009).
    [Crossref]
  24. C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
    [Crossref]
  25. C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
    [Crossref]
  26. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
    [Crossref] [PubMed]
  27. F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
    [Crossref]
  28. N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011).
    [Crossref]
  29. C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
    [Crossref] [PubMed]
  30. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref] [PubMed]
  31. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  32. S. S. Rao, Engineering Optimization: Theory and Practice (Wiley Publishing, 2009).
    [Crossref]
  33. Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Optimized heralding schemes for single photons,” Phys. Rev. A 84, 033844 (2011).
    [Crossref]
  34. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
    [Crossref]
  35. P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
    [Crossref]
  36. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
    [Crossref] [PubMed]
  37. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
    [Crossref] [PubMed]
  38. Y.-P. Huang and P. Kumar, “Distilling quantum entanglement via mode-matched filtering,” Phys. Rev. A 84, 032315 (2011).
    [Crossref]
  39. J. B. Altepeter, N. N. Oza, M. Medić, E. R. Jeffrey, and P. Kumar, “Entangled photon polarimetry,” Opt. Express 19, 26011–26016 (2011).
    [Crossref]
  40. C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
    [Crossref] [PubMed]
  41. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2000).
    [Crossref]

2014 (2)

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (5)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
[Crossref]

M. Vasilyev and P. Kumar, “Frequency up-conversion of quantum images,” Opt. Express 20, 6644–6656 (2012).
[Crossref] [PubMed]

J. Palací, A. Bockelt, and B. Vidal, “Terahertz radiation shaping based on optical spectrum modulation in the time domain,” Opt. Express 20, 23117–23125 (2012).
[Crossref] [PubMed]

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

2011 (7)

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum Optical Waveform Conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Y.-P. Huang and P. Kumar, “Distilling quantum entanglement via mode-matched filtering,” Phys. Rev. A 84, 032315 (2011).
[Crossref]

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Optimized heralding schemes for single photons,” Phys. Rev. A 84, 033844 (2011).
[Crossref]

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

J. B. Altepeter, N. N. Oza, M. Medić, E. R. Jeffrey, and P. Kumar, “Entangled photon polarimetry,” Opt. Express 19, 26011–26016 (2011).
[Crossref]

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011).
[Crossref]

2010 (4)

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat Photon 4, 760–766 (2010).
[Crossref]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
[Crossref] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

2009 (3)

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

J. Shapiro, “The quantum theory of optical communications,” IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569 (2009).
[Crossref]

2008 (2)

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

2007 (3)

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[Crossref] [PubMed]

2005 (2)

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

2003 (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Reports 374, 385 (2003).
[Crossref]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

1990 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Altepeter, J. B.

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Optimized heralding schemes for single photons,” Phys. Rev. A 84, 033844 (2011).
[Crossref]

J. B. Altepeter, N. N. Oza, M. Medić, E. R. Jeffrey, and P. Kumar, “Entangled photon polarimetry,” Opt. Express 19, 26011–26016 (2011).
[Crossref]

André, A.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Baek, J.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Balic, V.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

Baune, C.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Bellini, M.

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

Belthangady, C.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

Bockelt, A.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Braje, D. A.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

Brecht, B.

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Cassemiro, K. N.

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Cheung, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Corney, J. F.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum Optical Waveform Conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat Photon 4, 760–766 (2010).
[Crossref]

Dezfooliyan, A.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

Donohue, J.

J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Du, S.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

Eberle, T.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Eckstein, A.

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Fedrizzi, A.

J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Fejer, M. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38, 1310–1312 (2013).
[Crossref] [PubMed]

Fiurášek, J.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Fleischhauer, M.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Fontaine, N.

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Fontaine, N. K.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
[Crossref] [PubMed]

Geisler, D.

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Goode, D. P.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Gorshkov, A. V.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Goswami, D.

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Reports 374, 385 (2003).
[Crossref]

Gruezke, L. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Hamm, R. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Händchen, V.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Harris, S. E.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

Heritage, J.

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Heritage, J. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
[Crossref] [PubMed]

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
[Crossref]

Huang, Y.-P.

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Y.-P. Huang and P. Kumar, “Mode-resolved photon counting via cascaded quantum frequency conversion,” Opt. Lett. 38, 468–470 (2013).
[Crossref] [PubMed]

Y.-P. Huang and P. Kumar, “Distilling quantum entanglement via mode-matched filtering,” Phys. Rev. A 84, 032315 (2011).
[Crossref]

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Optimized heralding schemes for single photons,” Phys. Rev. A 84, 033844 (2011).
[Crossref]

Jeffrey, E. R.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
[Crossref]

Joly, N. Y.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Junesand, C.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Kielpinski, D.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum Optical Waveform Conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Kim, Y.-S.

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Kolchin, P.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

Kumar, P.

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Y.-P. Huang and P. Kumar, “Mode-resolved photon counting via cascaded quantum frequency conversion,” Opt. Lett. 38, 468–470 (2013).
[Crossref] [PubMed]

M. Vasilyev and P. Kumar, “Frequency up-conversion of quantum images,” Opt. Express 20, 6644–6656 (2012).
[Crossref] [PubMed]

J. B. Altepeter, N. N. Oza, M. Medić, E. R. Jeffrey, and P. Kumar, “Entangled photon polarimetry,” Opt. Express 19, 26011–26016 (2011).
[Crossref]

Y.-P. Huang and P. Kumar, “Distilling quantum entanglement via mode-matched filtering,” Phys. Rev. A 84, 032315 (2011).
[Crossref]

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Optimized heralding schemes for single photons,” Phys. Rev. A 84, 033844 (2011).
[Crossref]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[Crossref] [PubMed]

Kuo, P. S.

Langrock, C.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

Lavoie, J.

J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Leaird, D. E.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
[Crossref]

Liou, K. Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Long, C. M.

Lourdudoss, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Lukens, J. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

Lukin, M. D.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

McKinstrie, C. J.

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
[Crossref]

Medic, M.

Mejling, L.

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
[Crossref]

Mosley, P. J.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Nasr, M. B.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Nguyen, N.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Nielsen, M. A.

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Okamoto, K.

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Oza, N. N.

Palací, J.

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Patel, B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Pelc, J. S.

Podlipensky, A.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Polycarpou, C.

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

Quiring, V.

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Ralph, T. C.

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Rao, S. S.

S. S. Rao, Engineering Optimization: Theory and Practice (Wiley Publishing, 2009).
[Crossref]

Raymer, M. G.

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
[Crossref]

Reddy, D. V.

Reinhard, B. M.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Resch, K. J.

J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Ricken, R.

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Rohde, P. P.

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Rong, G.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Rottwitt, K.

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Opt. Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
[Crossref]

Russell, P. S. J.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Saleh, B. E.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Samblowski, A.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Sansoni, L.

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Schnabel, R.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Scott, R.

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Scott, R. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
[Crossref] [PubMed]

Shapiro, J.

J. Shapiro, “The quantum theory of optical communications,” IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569 (2009).
[Crossref]

Silberhorn, C.

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19, 13770–13778 (2011).
[Crossref] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Slattery, O.

Soares, F. M.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Søensen, A. S.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Söller, C.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Su, T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Suche, H.

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

Sun, Y.-Z.

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Supradeepa, V. R.

Tang, X.

Teich, M. C.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2000).
[Crossref]

Tsang, W. T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Valley, G. C.

Vasilyev, M.

Venturi, G.

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

Vidal, B.

Vollmer, C. E.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Wang, W.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Wang, Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Weiner, A. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat Photon 4, 760–766 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
[Crossref]

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Wiseman, H. M.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum Optical Waveform Conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Wright, L.

J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Wu, R.

Yang, L.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Yin, G. Y.

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

Yoo, S. J. B.

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011).
[Crossref]

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18, 18655–18670 (2010).
[Crossref] [PubMed]

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Zang, L. Y.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Zavatta, A.

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

Zeilinger, A.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Zhou, X.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Zukowski, M.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Shapiro, “The quantum theory of optical communications,” IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Geisler, N. Fontaine, R. Scott, J. Heritage, K. Okamoto, and S. J. B. Yoo, “360-gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21, 489–491 (2009).
[Crossref]

Nat Photon (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat Photon 4, 760–766 (2010).
[Crossref]

Nat. Photon. (2)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photon. 1, 463 (2007).
[Crossref]

J. Lavoie, J. Donohue, L. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[Crossref]

Nature (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011).
[Crossref]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Photonics Journal, IEEE (1)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic inp 100-channel × 10-ghz device for optical arbitrary waveform generation,” Photonics Journal, IEEE 3, 975–985 (2011).
[Crossref]

Phys. Reports (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Reports 374, 385 (2003).
[Crossref]

Phys. Rev. A (5)

C. J. McKinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, “Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing,” Phys. Rev. A 85, 053829 (2012).
[Crossref]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Optimized heralding schemes for single photons,” Phys. Rev. A 84, 033844 (2011).
[Crossref]

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Y.-P. Huang and P. Kumar, “Distilling quantum entanglement via mode-matched filtering,” Phys. Rev. A 84, 032315 (2011).
[Crossref]

Phys. Rev. Lett. (9)

C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109, 053602 (2012).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum Optical Waveform Conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112, 133602 (2014).
[Crossref] [PubMed]

P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Søensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Other (5)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

B. Brecht, A. Eckstein, R. Ricken, V. Quiring, H. Suche, L. Sansoni, and C. Silberhorn, “The quantum pulse gate - enabling high-dimensional time-frequency quantum information,” arXiv:1403.4397 [quant-ph] (2014).

S. S. Rao, Engineering Optimization: Theory and Practice (Wiley Publishing, 2009).
[Crossref]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

QFC with tailored pump pulses.

Fig. 2
Fig. 2

Schematic of dynamic OAWG.

Fig. 3
Fig. 3

A 100 GHz OAWG waveform simulation assuming (a) one-channel or (b) ten-channel OAWG device with different DAC performances (i.e., ENOB). The grey line is the target waveform, the blue line is the waveform amplitude (left and right are for chirped and transform-limited pulses, respectively), and the green line is the waveform’s instantaneous frequency.

Fig. 4
Fig. 4

(a): Temporal profile of the n-th Schmidt mode, ψn, of the SPDC-generated photon pairs. (b): Temporal profile of pump pulse Ψ n optimized for selective upconversion of mode ψn. (c) and (d): Amplitude and phase profiles of comb lines for constructing Ψ1 and Ψ5, respectively.

Fig. 5
Fig. 5

Conversion-efficiency matrix for 10 SPDC modes, where the n-th pump mode is optimized to upconvert the n-th signal mode with high efficiency while avoiding converting the others.

Fig. 6
Fig. 6

(a) Temporal profiles of ψ±. (b) Optimized pump-pulse profile Ψ+(−) for converting ψ+(−). (c) Conversion efficiencies of 10 orthogonal modes by Ψ+ (blue bar) and Ψ (green bar), respectively.

Fig. 7
Fig. 7

(a) Temporal shapes of mode 5 after the first QFC stage (blue) and the pump pulse Ψ5 for selectively upconverting it (green). (b) Conversion efficiencies by pump Ψ5.

Fig. 8
Fig. 8

(a) An exponentially decaying pulse is reshaped into a Gaussian waveform. The temporal profile of the pump pulse used is shown in (b). (c) A HG0 mode is deterministically reshaped to a dual-peak HG1 mode. The pump pulse profile is shown in (d).

Fig. 9
Fig. 9

Experimental schematic for mode-selective SFG.

Fig. 10
Fig. 10

(a) Phase-matching curve of the PPKTP waveguide used in Fig. 9. (b) The SFG conversion efficiency and the count rate of in-band noise photons versus the pump power.

Fig. 11
Fig. 11

Designed and measured signal (a) and pump (b) pulses for the mode-selective SFG experiment.

Fig. 12
Fig. 12

Yellow bars show the conversion efficiencies for modes 1 through 10 using a pump optimized for mode 3 in (a) and that for mode 8 in (b). (a) The box and whisker plots on each column show the results of 99 trials of noise added to the pump optimized for mode 3. The red line shows the mean conversion over 99 trials, the box edges show the 25th and 75th percentiles of the set and the whiskers extend to include 99% of the data set. Anything outside of the whiskers is considered an outlier. (b) The box and whisker plots on each column show the results of 99 trials of noise added to the pump optimized for mode 8. The red line shows the mean conversion over 99 trials, the box edges show the 25th and 75th percentiles of the set and the whiskers extend to include 99% of the data set.

Tables (1)

Tables Icon

Table 1 Signal conversion efficiencies for different pumps

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( z + n μ n t n ) a ^ ( z , t ) = i η Ψ ( t ) b ^ ( z , t ) ,
( z + n ν n t n ) b ^ ( z , t ) = i η * Ψ * ( t ) a ^ ( z , t ) ,
G 1 ( t , t ) = n = 0 ς n ϕ n ( t ) ψ n * ( t ) ,
G 2 ( t , t ) = n = 0 τ n φ n ( t ) ψ n * ( t ) ,
a ^ n = ς n b ^ n + ε ^ n ,
c ^ n = τ n b ^ n + ζ ^ n ,

Metrics