Abstract

We have built a spectrally resolved Raman lidar to measure atmospheric N2 Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm−1 for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles

Miao Weng, Fan Yi, Fuchao Liu, Yunpeng Zhang, and Xiangliang Pan
Opt. Express 26(21) 27555-27571 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22(19), 2984–2990 (1983).
    [Crossref] [PubMed]
  2. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
    [Crossref] [PubMed]
  3. J. Reichardt, “Cloud and aerosol spectroscopy with Raman lidar,” J. Atmos. Ocean. Technol. 31(9), 1946–1963 (2014).
    [Crossref]
  4. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Rem. Sens. 31(1), 90–101 (1993).
    [Crossref]
  5. A. Behrendt, Temperature measurement with Lidar, in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (C. Weitkamp, 2005), Chap. 10.
  6. U. Wandinger, Raman lidar, in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (C. Weitkamp, 2005), Chap. 9.
  7. F. C. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52(28), 6884–6895 (2013).
    [Crossref] [PubMed]
  8. F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
    [Crossref]

2014 (1)

J. Reichardt, “Cloud and aerosol spectroscopy with Raman lidar,” J. Atmos. Ocean. Technol. 31(9), 1946–1963 (2014).
[Crossref]

2013 (1)

2007 (1)

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

2005 (1)

1993 (1)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Rem. Sens. 31(1), 90–101 (1993).
[Crossref]

1983 (1)

Althausen, D.

Ansmann, A.

Arshinov, Y.

Arshinov, Y. F.

Bobrovnikov, S.

Bobrovnikov, S. M.

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Rem. Sens. 31(1), 90–101 (1993).
[Crossref]

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Rem. Sens. 31(1), 90–101 (1993).
[Crossref]

He, Y. J.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Huang, C. M.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Liu, F. C.

Mattis, I.

Mitev, V. M.

Müller, D.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Rem. Sens. 31(1), 90–101 (1993).
[Crossref]

Reichardt, J.

J. Reichardt, “Cloud and aerosol spectroscopy with Raman lidar,” J. Atmos. Ocean. Technol. 31(9), 1946–1963 (2014).
[Crossref]

Serikov, I.

Wandinger, U.

Yi, F.

F. C. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52(28), 6884–6895 (2013).
[Crossref] [PubMed]

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Yu, C. M.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Yue, X. C.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Zhang, S. D.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Zhou, J.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Zuev, V. E.

Appl. Opt. (3)

IEEE Trans. Geosci. Rem. Sens. (1)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Rem. Sens. 31(1), 90–101 (1993).
[Crossref]

J. Atmos. Ocean. Technol. (1)

J. Reichardt, “Cloud and aerosol spectroscopy with Raman lidar,” J. Atmos. Ocean. Technol. 31(9), 1946–1963 (2014).
[Crossref]

J. Geophys. Res. (1)

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112(D4), D04303 (2007).
[Crossref]

Other (2)

A. Behrendt, Temperature measurement with Lidar, in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (C. Weitkamp, 2005), Chap. 10.

U. Wandinger, Raman lidar, in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (C. Weitkamp, 2005), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The Stokes vibrational-rotational Raman (VRR) spectra of atmospheric N2 obtained from a theoretical calculation for temperatures of 200 K (blue) and 300 K (red) respectively. The incident laser wavelength is 354.8 nm. Note that the S- and O-branch lines have nearly the same line spacing (~0.12 nm) from J = 0 (2) to 20.
Fig. 2
Fig. 2 Optical layout of the spectrally resolved N2 vibrational-rotational Raman lidar for atmospheric temperature measurement. BE, beam expander; RM, reflecting mirror; L, lens; G, grating; BP, band pass filter; FB, fiber bundle; PMT, photomultiplier tube.
Fig. 3
Fig. 3 (a) Altitude-dependent atmospheric N2 Stokes vibrational-rotational Raman spectra derived from the spectrally resolved Raman lidar measurement at Wuhan during 0000-0100 LT on 12 May 2013. (b) Signal intensity profiles for the 16th (Q branch; magenta), 24th (S branch, J = 6; red) and 30th (S branch, J = 12; blue) channels, respectively.
Fig. 4
Fig. 4 Atmospheric N2 Stokes vibrational-rotational Raman spectra measured by the spectrally resolved Raman lidar at altitudes of: (a) 5.91 km; (b) 6.90 km; (c) 7.92 km, respectively. The measurement was performed at Wuhan during 0000-0500 LT on 12 May 2013. For comparison, the theoretically-calculated N2 Stokes VRR spectra for each given temperature (according to the local radiosonde data) at each altitude in the O and S branches are added (black). Note that the lidar-measured N2 Stokes VRR spectra in the O (blue) and S (red) branches agree very well (in shape) with the result of the Raman scattering theory.
Fig. 5
Fig. 5 Temperature profile measured with the spectrally resolved Raman lidar at Wuhan during 0000-0500 LT on 12 May 2013. (a) Temperature profiles obtained by the signal ratio method respectively from the channel pair J 2 = 12/ J 1 = 6 (blue) and the pair J 2 = 10/ J 1 = 4 (magenta). For comparison, the radiosonde temperature data at 0800 LT on 12 May 2013 from the Wuhan Weather Station is plotted (black solid circle). (b) Deviations between the lidar-measured temperature and radiosonde data. (c) Temperature profiles from lidar by the envelope method (red) and from radiosonde. (d) Their deviation.
Fig. 6
Fig. 6 (a) The input (red) and retrieved (blue) temperature from the fitted result as a function of the fitted Gaussian width W (see text). (b) Algebraic deviation between the input and retrieved temperature (magenta).

Tables (1)

Tables Icon

Table 1 Partial channel ratio values from laboratory optical measurement

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

{ σ i ( J , T ) = ( 2 π ) 4 [ ν ˜ 0 | Δ ν ˜ ( J ) | i ] 4 g N Φ i ( J ) ( 2 I N + 1 ) 2 Q exp [ h c B 0 J ( J + 1 ) k T ] , i = S a n d Q : J = 0 , 1 , 2 , ... ; i = O : J = 2 , 3 , 4 , ... ,
| Δ ν ˜ ( J ) | S ν ˜ v i b + ( 4 J + 6 ) B 1 , J = 0 , 1 , 2 , ... ,
| Δ ν ˜ ( J ) | Q ν ˜ v i b + J ( J + 1 ) ( B 1 B 0 ) , J = 0 , 1 , 2 , ... ,
| Δ ν ˜ ( J ) | O ν ˜ v i b ( 4 J 2 ) B 0 , J = 2 , 3 , 4 , ... ,
Φ S ( J ) = h 8 π 2 c ν ˜ v i b [ 1 exp ( h c ν ˜ v i b / k T ) ] 7 ( J + 1 ) ( J + 2 ) 30 ( 2 J + 3 ) γ ' 2 , J = 0 , 1 , 2 , ... ,
Φ Q ( J ) = h ( 2 J + 1 ) 8 π 2 c ν ˜ v i b [ 1 exp ( h c ν ˜ v i b / k T ) ] [ α ' 2 + 7 ( J + 1 ) ( J + 2 ) 45 ( 2 J 1 ) ( 2 J + 3 ) γ ' 2 ] , J = 0 , 1 , 2 , ... ,
Φ O ( J ) = h 8 π 2 c ν ˜ v i b [ 1 exp ( h c ν ˜ v i b / k T ) ] 7 J ( J 1 ) 30 ( 2 J 1 ) γ ' 2 , J = 2 , 3 , 4 , ... ,
N ( ν J i , z ) = P 0 K O ( z ) z 2 H ( ν J i ) n ( z ) σ i ( J , T ) τ ( ν ˜ 0 ) τ ( ν J i ) .
σ i ( J , T ) σ S ( 6 , T ) = 1 R i ( J ) N ( ν J i , z ) N ( ν 6 S , z ) ,
R = N ( ν J 2 S , z ) N ( ν J 1 S , z ) = R S ( J 2 ) R S ( J 1 ) exp ( a T + b ) .
a = h c B 0 k [ J 2 ( J 2 + 1 ) J 1 ( J 1 + 1 ) ] ,
b = ln [ ( J 2 + 1 ) ( J 2 + 2 ) ( 2 J 1 + 3 ) ( J 1 + 1 ) ( J 1 + 2 ) ( 2 J 2 + 3 ) ] .
T = f ( R ) = a / { l n [ N ( ν J 2 S , z ) R S ( J 1 ) N ( ν J 1 S , z ) R S ( J 2 ) ] b } .
I ( | Δ v ˜ ( J ) | S ) = σ S ( J , T ) σ S ( 6 , T ) = H exp [ 1 2 ( | Δ v ˜ ( J ) | S M W ) 2 ] , J = 2 , 4 , 6 , 8 , 10 ,
T = f ( W ) = A 0 exp [ 1 2 ( W A 1 A 2 ) 2 ] + A 3 + A 4 W ,
Δ T = T 2 a Δ R S ( J = 12 ) R S ( J = 12 ) .

Metrics