Abstract

We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the latter case. By manipulating the surface chemistry of these photonic bricks, which introduces a fourth length-scale (molecular) of independent tuning into our design, we can further engineer interactions between liquids and the pores. This allows the structural color to be maintained in oil-based formulations, and enables the creation of dynamic liquid-responsive images from the pigment.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absorption and scattering of light by pigment particles in solar-absorbing paints

Marta Klanjšek Gunde and Zorica Crnjak Orel
Appl. Opt. 39(4) 622-628 (2000)

Visual and instrumental correlation of sparkle by the magnitude estimation method

Omar Gómez, Esther Perales, Elísabet Chorro, Valentín Viqueira, and Francisco M. Martínez-Verdú
Appl. Opt. 55(23) 6458-6463 (2016)

Linear basis for metallic and iridescent colors

José M. Medina
Appl. Opt. 47(30) 5644-5653 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99(7), 1963–1982 (1999).
    [Crossref] [PubMed]
  2. R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
    [Crossref] [PubMed]
  3. F. Delgado-Vargas and O. Paredes-Lopez, Natural Colorants for Food and Nutraceutical Uses (CRC, Boca Raton, FL, 2002).
  4. Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
    [Crossref]
  5. C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
    [Crossref] [PubMed]
  6. M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
    [Crossref]
  7. D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
    [Crossref]
  8. J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
    [Crossref] [PubMed]
  9. D. P. Josephson, E. J. Popczun, and A. Stein, “Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments,” J. Phys. Chem. C 117(26), 13585–13592 (2013).
    [Crossref]
  10. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007).
    [Crossref] [PubMed]
  11. A. Stein, F. Li, and N. R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mater. 20(3), 649–666 (2008).
    [Crossref]
  12. S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
    [Crossref]
  13. C. E. Finlayson and J. J. Baumberg, “Polymer opals as novel photonic materials,” Polym. Int. 62(10), 1403–1407 (2013).
    [Crossref]
  14. A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
    [Crossref] [PubMed]
  15. D. Graham-Rowe, “Tunable structural colour,” Nat. Photonics 3(10), 551–553 (2009).
    [Crossref]
  16. C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
    [Crossref]
  17. M. Egen and R. Zentel, “Tuning the properties of photonic films from polymer beads by chemistry,” Chem. Mater. 14(5), 2176–2183 (2002).
    [Crossref]
  18. Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
    [Crossref] [PubMed]
  19. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  20. J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
    [Crossref] [PubMed]
  21. S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).
  22. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
    [Crossref]
  23. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
    [Crossref]
  24. J. Turkevich, G. Garton, and P. C. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
    [Crossref]
  25. R. H. Doremus, “Optical properties of small gold particles,” J. Chem. Phys. 40(8), 2389 (1964).
    [Crossref]
  26. M. Kerker, “The optics of colloidal silver: something old and something new,” J. Coll. Inter. Sci. 105(2), 297–314 (1985).
    [Crossref]
  27. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  28. A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” J. Mater. Chem. C 1(18), 3150–3157 (2013).
    [Crossref]
  29. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref] [PubMed]
  30. L. M. Liz-Marzán, “Nanometals: Formation and Color,” Mater. Today 7(2), 26–31 (2004).
    [Crossref]
  31. T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
    [Crossref] [PubMed]
  32. Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
    [Crossref]
  33. Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
    [Crossref]
  34. Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
    [Crossref]
  35. Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
    [Crossref] [PubMed]
  36. J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
    [Crossref]
  37. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
    [Crossref] [PubMed]
  38. L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
    [Crossref] [PubMed]
  39. K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
    [Crossref]
  40. J. Turkevich, P. C. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
    [Crossref]
  41. T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
    [Crossref] [PubMed]
  42. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
    [Crossref] [PubMed]
  43. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
    [Crossref] [PubMed]
  44. I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
    [Crossref] [PubMed]
  45. I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
    [Crossref] [PubMed]
  46. K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
    [Crossref] [PubMed]
  47. X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
    [Crossref] [PubMed]
  48. C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
    [Crossref] [PubMed]
  49. K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
    [Crossref]

2014 (4)

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

2013 (5)

D. P. Josephson, E. J. Popczun, and A. Stein, “Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments,” J. Phys. Chem. C 117(26), 13585–13592 (2013).
[Crossref]

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
[Crossref]

C. E. Finlayson and J. J. Baumberg, “Polymer opals as novel photonic materials,” Polym. Int. 62(10), 1403–1407 (2013).
[Crossref]

A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” J. Mater. Chem. C 1(18), 3150–3157 (2013).
[Crossref]

2012 (6)

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
[Crossref] [PubMed]

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

2011 (3)

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

2010 (4)

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

2009 (2)

D. Graham-Rowe, “Tunable structural colour,” Nat. Photonics 3(10), 551–553 (2009).
[Crossref]

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

2008 (3)

A. Stein, F. Li, and N. R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mater. 20(3), 649–666 (2008).
[Crossref]

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

2007 (4)

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007).
[Crossref] [PubMed]

2006 (2)

Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
[Crossref]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

2005 (1)

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

2004 (2)

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

L. M. Liz-Marzán, “Nanometals: Formation and Color,” Mater. Today 7(2), 26–31 (2004).
[Crossref]

2003 (3)

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

2002 (1)

M. Egen and R. Zentel, “Tuning the properties of photonic films from polymer beads by chemistry,” Chem. Mater. 14(5), 2176–2183 (2002).
[Crossref]

1999 (3)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99(7), 1963–1982 (1999).
[Crossref] [PubMed]

1998 (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

1985 (1)

M. Kerker, “The optics of colloidal silver: something old and something new,” J. Coll. Inter. Sci. 105(2), 297–314 (1985).
[Crossref]

1964 (1)

R. H. Doremus, “Optical properties of small gold particles,” J. Chem. Phys. 40(8), 2389 (1964).
[Crossref]

1954 (1)

J. Turkevich, G. Garton, and P. C. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

1951 (1)

J. Turkevich, P. C. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Aguirre, C. I.

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Ahl, S.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Aizenberg, J.

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
[Crossref] [PubMed]

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

Allard, D.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

Alvarez-Puebla, R. A.

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

Atwater, M.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Barnard, A. S.

A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” J. Mater. Chem. C 1(18), 3150–3157 (2013).
[Crossref]

Barrett, C. J.

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

Baumberg, J. J.

C. E. Finlayson and J. J. Baumberg, “Polymer opals as novel photonic materials,” Polym. Int. 62(10), 1403–1407 (2013).
[Crossref]

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007).
[Crossref] [PubMed]

Braun, L.

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

Burgess, I. B.

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

Burkert, K.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Cai, Z.

Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
[Crossref]

Cao, H.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Carda, J. B.

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

Chen, L.

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Chen, S.

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

Choi, T. M.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

Choi, W.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Cohen, R. E.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Cordoncillo, E.

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

Davis, S.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

Denny, N. R.

A. Stein, F. Li, and N. R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mater. 20(3), 649–666 (2008).
[Crossref]

Diaz, A.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Ding, S.

Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
[Crossref]

Doremus, R. H.

R. H. Doremus, “Optical properties of small gold particles,” J. Chem. Phys. 40(8), 2389 (1964).
[Crossref]

Dufresne, E. R.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Egen, M.

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

M. Egen and R. Zentel, “Tuning the properties of photonic films from polymer beads by chemistry,” Chem. Mater. 14(5), 2176–2183 (2002).
[Crossref]

el-Sayed, M. A.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Escribano, P.

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Fernández-López, C.

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

Finlayson, C. E.

C. E. Finlayson and J. J. Baumberg, “Polymer opals as novel photonic materials,” Polym. Int. 62(10), 1403–1407 (2013).
[Crossref]

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

Fleischhaker, F.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

Forster, J. D.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Frese, P.

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

Fujishima, A.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Garton, G.

J. Turkevich, G. Garton, and P. C. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

González, A. L.

A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” J. Mater. Chem. C 1(18), 3150–3157 (2013).
[Crossref]

Goulet-Hanssens, A.

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

Graham-Rowe, D.

D. Graham-Rowe, “Tunable structural colour,” Nat. Photonics 3(10), 551–553 (2009).
[Crossref]

Gu, Z. Z.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Guo, L. J.

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Haines, A. I.

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

Halas, N. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Hatton, B.

L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
[Crossref] [PubMed]

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

Hatton, B. D.

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

Hellmann, G. P.

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

Hiller, J.

J. Turkevich, P. C. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Hobbs, R. G.

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Hohemberger, J. M.

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

Holmes, J. D.

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Hu, Y.

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

Huo, Q.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Jeon, S.-J.

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

Jeong, W. C.

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

Jonas, U.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Josephson, D. P.

D. P. Josephson, E. J. Popczun, and A. Stein, “Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments,” J. Phys. Chem. C 117(26), 13585–13592 (2013).
[Crossref]

Kaplan, A. F.

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Kaplan, D. L.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Kerker, M.

M. Kerker, “The optics of colloidal silver: something old and something new,” J. Coll. Inter. Sci. 105(2), 297–314 (1985).
[Crossref]

Khoo, I. C.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Kim, S.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Kim, S.-H.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

Kim, Y.-S.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

Kinney, M. H.

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

Klupp Taylor, R. N.

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

Knoll, W.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Koay, N.

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

Kolle, M.

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
[Crossref] [PubMed]

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

Kreiter, M.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Kubo, S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Lange, B.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Leugering, G.

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

Li, F.

A. Stein, F. Li, and N. R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mater. 20(3), 649–666 (2008).
[Crossref]

Li, Q.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Liew, S. F.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, X.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Liu, Y. J.

Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
[Crossref]

Liz-Marzán, L. M.

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

L. M. Liz-Marzán, “Nanometals: Formation and Color,” Mater. Today 7(2), 26–31 (2004).
[Crossref]

Loncar, M.

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

Lu, X.

Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
[Crossref]

Lu, Y.

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

Ma, M.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Mabry, J. M.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Magkiriadou, S.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

Mallouk, T. E.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Manoharan, V. N.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

Marinova, Y.

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

Mateo-Mateo, C.

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

Mayer, T. S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Mazzella, S. A.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

McKinley, G. H.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Mishchenko, L.

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
[Crossref] [PubMed]

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

Mitropoulos, A. N.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Mochrie, S. G. J.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Morris, M. A.

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Nakajima, R.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Nerger, B. A.

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

Neumann, T.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

Noguez, C.

A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” J. Mater. Chem. C 1(18), 3150–3157 (2013).
[Crossref]

Noh, H.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

O’Driscoll, C.

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

O’Hern, C. S.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Ok, J. G.

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Omenetto, F. G.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Onishi, H.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Park, H. S.

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

Park, J.-G.

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Pastoriza-Santos, I.

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

Pérez-Juste, J.

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

Perry, C. C.

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

Peschel, U.

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

Peukert, W.

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

Pfaff, G.

G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99(7), 1963–1982 (1999).
[Crossref] [PubMed]

Phillips, K. R.

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

Popczun, E. J.

D. P. Josephson, E. J. Popczun, and A. Stein, “Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments,” J. Phys. Chem. C 117(26), 13585–13592 (2013).
[Crossref]

Prum, R. O.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Pursiainen, O. L. J.

Qian, W.

Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
[Crossref]

Quan, X.

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

Rahme, K.

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Raymond, K. P.

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

Reguera, E.

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

Reis, O.

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

Reynders, P.

G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99(7), 1963–1982 (1999).
[Crossref] [PubMed]

Ruhl, T.

Rutledge, G. C.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Sandhage, K. H.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

Saranathan, V.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Sato, O.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Schreck, C. F.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Seifrt, F.

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

Shi, H.

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Singleton, T. A.

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

Snoswell, D. R. E.

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

Spahn, P.

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007).
[Crossref] [PubMed]

Spitzberg, J. D.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Stein, A.

D. P. Josephson, E. J. Popczun, and A. Stein, “Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments,” J. Phys. Chem. C 117(26), 13585–13592 (2013).
[Crossref]

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

A. Stein, F. Li, and N. R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mater. 20(3), 649–666 (2008).
[Crossref]

Stevenson, P. C.

J. Turkevich, G. Garton, and P. C. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

J. Turkevich, P. C. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Takahashi, K.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Tan, Y.

Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
[Crossref]

Tang, Y.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Tännert, K.

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

Tao, H.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Teng, J.

Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
[Crossref]

Turkevich, J.

J. Turkevich, G. Garton, and P. C. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

J. Turkevich, P. C. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Tuteja, A.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Uetsuka, H.

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Vasquez, Y.

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

Viel, B.

Vogel, N.

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Wang, J.

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Wang, Y.

Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
[Crossref]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Winkler, H.

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Wu, Y.-K.

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Wulf, M.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

Xu, T.

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Yang, L.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Yang, S.-M.

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

Yu, H.

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

Zentel, R.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

M. Egen and R. Zentel, “Tuning the properties of photonic films from polymer beads by chemistry,” Chem. Mater. 14(5), 2176–2183 (2002).
[Crossref]

Zhao, H.

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

Zhuromskyy, O.

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

C. I. Aguirre, E. Reguera, and A. Stein, “Colloidal photonic crystal pigments with low angle dependence,” ACS Appl. Mater. Interfaces 2(11), 3257–3262 (2010).
[Crossref] [PubMed]

ACS Nano (1)

I. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, and J. Aizenberg, “Wetting in color: colorimetric differentiation of organic liquids with high selectivity,” ACS Nano 6(2), 1427–1437 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Vasquez, M. Kolle, L. Mishchenko, B. D. Hatton, and J. Aizenberg, “Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films,” ACS Photonics 1(1), 53–60 (2014).
[Crossref]

Adv. Funct. Mater. (1)

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Adv. Mater. (4)

A. I. Haines, C. E. Finlayson, D. R. E. Snoswell, P. Spahn, G. P. Hellmann, and J. J. Baumberg, “Anisotropic resonant scattering from polymer photonic crystals,” Adv. Mater. 24(44), OP305–OP308 (2012).
[Crossref] [PubMed]

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, “Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors,” Adv. Mater. 20, 4129–4134 (2008).

R. N. Klupp Taylor, F. Seifrt, O. Zhuromskyy, U. Peschel, G. Leugering, and W. Peukert, “Painting by numbers: nanoparticle-based colorants in the post-empirical age,” Adv. Mater. 23(22-23), 2554–2570 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, “Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly,” Angew. Chem. Int. Ed. Engl. 53(11), 2899–2903 (2014).
[Crossref] [PubMed]

Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003).
[Crossref] [PubMed]

Chem. Mater. (4)

M. Egen and R. Zentel, “Tuning the properties of photonic films from polymer beads by chemistry,” Chem. Mater. 14(5), 2176–2183 (2002).
[Crossref]

A. Stein, F. Li, and N. R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mater. 20(3), 649–666 (2008).
[Crossref]

Y. Tan, W. Qian, S. Ding, and Y. Wang, “Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties,” Chem. Mater. 18(15), 3385–3389 (2006).
[Crossref]

K. R. Phillips, N. Vogel, Y. Hu, M. Kolle, C. C. Perry, and J. Aizenberg, “Tunable anisotropy in inverse opals and emerging optical properties,” Chem. Mater. 26(4), 1622–1628 (2014).
[Crossref]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Chem. Rev. (1)

G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99(7), 1963–1982 (1999).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Discuss. Faraday Soc. (1)

J. Turkevich, P. C. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Environ. Sci. Technol. (1)

Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis,” Environ. Sci. Technol. 46(3), 1724–1730 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, and J. Aizenberg, “Encoding complex wettability patterns in chemically functionalized 3D photonic crystals,” J. Am. Chem. Soc. 133(32), 12430–12432 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

R. H. Doremus, “Optical properties of small gold particles,” J. Chem. Phys. 40(8), 2389 (1964).
[Crossref]

J. Coll. Inter. Sci. (1)

M. Kerker, “The optics of colloidal silver: something old and something new,” J. Coll. Inter. Sci. 105(2), 297–314 (1985).
[Crossref]

J. Colloid Sci. (1)

J. Turkevich, G. Garton, and P. C. Stevenson, “The color of colloidal gold,” J. Colloid Sci. 9, 26–35 (1954).
[Crossref]

J. Eur. Ceram. Soc. (1)

Y. Marinova, J. M. Hohemberger, E. Cordoncillo, P. Escribano, and J. B. Carda, “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments,” J. Eur. Ceram. Soc. 23(2), 213–220 (2003).
[Crossref]

J. Mater. Chem. (1)

J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008).
[Crossref]

J. Mater. Chem. C (1)

A. L. González, C. Noguez, and A. S. Barnard, “Mapping the structural and optical properties of anisotropic gold nanoparticles,” J. Mater. Chem. C 1(18), 3150–3157 (2013).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. Phys. Chem. C (2)

Z. Cai, Y. J. Liu, X. Lu, and J. Teng, “In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing,” J. Phys. Chem. C 117(18), 9440–9445 (2013).
[Crossref]

D. P. Josephson, E. J. Popczun, and A. Stein, “Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments,” J. Phys. Chem. C 117(26), 13585–13592 (2013).
[Crossref]

Lab Chip (1)

K. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, and J. Aizenberg, “Combinatorial wetting in colour: an optofluidic nose,” Lab Chip 12(19), 3666–3669 (2012).
[Crossref] [PubMed]

Langmuir (1)

C. Fernández-López, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref] [PubMed]

Macromol. Mater. Eng. (1)

M. Egen, L. Braun, R. Zentel, K. Tännert, P. Frese, O. Reis, and M. Wulf, “Artificial opals as effect pigments in clear-coatings,” Macromol. Mater. Eng. 289(2), 158–163 (2004).
[Crossref]

Mater. Today (1)

L. M. Liz-Marzán, “Nanometals: Formation and Color,” Mater. Today 7(2), 26–31 (2004).
[Crossref]

Nano Lett. (1)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Inverse Opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

D. Graham-Rowe, “Tunable structural colour,” Nat. Photonics 3(10), 551–553 (2009).
[Crossref]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Polym. Int. (1)

C. E. Finlayson and J. J. Baumberg, “Polymer opals as novel photonic materials,” Polym. Int. 62(10), 1403–1407 (2013).
[Crossref]

Proc. Biol. Sci. (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[Crossref] [PubMed]

RSC Adv. (1)

K. Rahme, L. Chen, R. G. Hobbs, M. A. Morris, C. O’Driscoll, and J. D. Holmes, “PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions,” RSC Adv. 3(17), 6085–6094 (2013).
[Crossref]

Science (1)

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318(5856), 1618–1622 (2007).
[Crossref] [PubMed]

Small (2)

L. Mishchenko, B. Hatton, M. Kolle, and J. Aizenberg, “Patterning hierarchy in direct and inverse opal crystals,” Small 8(12), 1904–1911 (2012).
[Crossref] [PubMed]

T. Xu, H. Shi, Y.-K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Soft Matter (2)

T. A. Singleton, I. B. Burgess, B. A. Nerger, A. Goulet-Hanssens, N. Koay, C. J. Barrett, and J. Aizenberg, “Photo-tuning of highly selective wetting in inverse opals,” Soft Matter 10(9), 1325–1328 (2014).
[Crossref] [PubMed]

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, and M. Wulf, “Opaline effect pigments by spray induced self‐assembly on porous substrates,” Soft Matter 3(2-3), 121–131 (2005).
[Crossref]

Other (1)

F. Delgado-Vargas and O. Paredes-Lopez, Natural Colorants for Food and Nutraceutical Uses (CRC, Boca Raton, FL, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a,b) Fabrication protocol: (a) Upper image: Substrates are coated with a template of photoresist (SU-8), comprised of a uniform bottom layer topologically patterned with channels aligned with the growth direction. Lower schematic: Silica inverse-opal films (IOFs), doped with plasmonic absorbers and plugged with a template of polymer colloids, are deposited in the channels via an evaporative co-assembly process developed recently, see [33], Vasquez et al. (b) The photoresist template and the polymer colloids are then simultaneously removed by calcination at 500°C in air, releasing the photonic bricks from the substrate. (c,d) Structure of the photonic bricks: (c) Left: mm-scale optical image (black background, diffuse illumination) of a collection of photonic bricks (photoresist template channel dimensions: 25 μm x 100 μm (h x w)) with several insets at different scales. Center: low-magnification SEM image showing the overall shape of the photonic bricks. Bottom right: higher magnification SEM image showing the sub-micron scale porosity. Top right: TEM image showing the gold nanoparticles encapsulated in the matrix. (d) The fabrication protocol allows for tuning of the morphology and composition of photonic bricks on several disparate length-scales (e.g. overall dimensions, porosity, plasmonic absorber doping).

Fig. 2
Fig. 2

(a) Length, (b) width, and (c) height distributions of photonic bricks synthesized in photoresist templates with different channel dimensions (standard deviation shown as the error bar), as well as for freeform photonic bricks. The lengths are the only dimension not specified in the templated photonic bricks and are determined by natural cracking of the inverse-opal strips as they are released from the channels.

Fig. 3
Fig. 3

Absorption is controlled by doping photonic bricks with metal nanoparticles. The absorption profile can be tuned by adjusting the size and shape of the particles. For example: (a) gold nanospheres (d ~12 nm) display an absorption maximum at λ ~520 nm and impart a red hue when incorporated into photonic bricks (0.7% AuNS by solid volume, a = 350 nm, formed from a photoresist template with 25 μm x 100 μm channels), while (b) silver nanoplates (thickness ~10 nm, d ~60-80 nm), display a primary absorption maximum at λ ~650 nm and impart a blue hue when incorporated into photonic bricks (0.35% Ag by solid volume, freeform, a = 200 nm).

Fig. 4
Fig. 4

Comparison of the photostability of an IOF doped with AuNS (0.7% AuNS by solid volume) (a) and an IOF whose pore surfaces were functionalized with a dyed polyelectrolyte (B, poly-(Disperse Red 1 acrylate-co-acrylic acid) [41]). While the dyed IOF shows photobleaching after 30 s of UV lamp exposure (130 mW/cm2), no changes in color or spectral response were observed for up to 1200 s of exposure (exposure beyond 1200 s not tested).

Fig. 5
Fig. 5

(a) IOFs (ordered porosity with a ~ 350 nm) display a bright red color in specular reflection, but this color blueshifts with increasing viewing angle. (b) When a single, flat IOF is replaced by randomly oriented photonic bricks, many scattering angles contribute to the observed color under diffuse lighting conditions, leading to a white appearance (C, left column). (C-E) Doping the photonic bricks (same porosity as A) with AuNS, which absorb blue and green wavelengths, produces a red hue. As a result, dispersions of AuNS-containing photonic bricks appear red. (c) Photographs (diffuse lighting conditions) showing how the red hue of the photonic bricks intensifies with increasing AuNS concentration (all bricks were built from photoresist templates with channel dimensions: 25 μm x 100 μm (h x w)). (d) Normalized specular reflectance (top row) and diffuse scattering (bottom row, 0° illumination) of the photonic bricks shown in C) with AuNS concentrations of 0%, 0.7% and 1.3% by solid volume. (e) Suppression by the AuNS (λabs ~520 nm) of Bragg reflection (red points, Rmax( ± 40°)/ Rmax(0°)) and non-resonant scattering (black points, S(520 nm)/S(800 nm)). Suppression of Bragg reflection (red points) is the ratio of the peak Bragg reflectance at θ = ± 40° (where λmax ~520 nm) and at θ = 0° (λ ~650 nm). Suppression of non-resonant scattering (black points) is the ratio of scattering intensity at λ = 520 nm and λ = 800 nm averaged over all scattering angles from −30° to 30° (0° illumination). Neither λ = 520 nm nor λ = 800 nm overlaps with the Bragg resonance at any of these angles. Both measures are averaged over three samples of photonic bricks for each AuNS concentration.

Fig. 6
Fig. 6

(a) Measured reflectance spectra at normal incidence for IOFs, each with a thickness of 10 close-packed layers on a silicon substrate, with no gold doping (green line) and 0.7% AuNS (by matrix volume). (b) Comparison of theoretically calculated reflectance for IOFs (10 layers on a silicon wafer) without AuNS doping, with 0.7% AuNS doping (by matrix volume), and doped with a broadband absorber with a wavelength-independent attenuation constant k = 0.008 (chosen to give similar blue-green attenuation to the AuNS-containing film). Reflectance was estimated using a 1D transfer matrix model, where the profile of the porosity is approximated by the laterally averaged dielectric constant as a function of depth. The effect of AuNS doping on the frequency-dependent dielectric constant of the silica was calculated using effective medium theory, as described in [42], Kubo et al.

Fig. 7
Fig. 7

(a) Photographs of photonic bricks dispersed on a substrate with different geometries, all containing the same AuNS content (0.7% by solid volume). The camera’s exposure settings were the same for all images in each row to facilitate an objective comparison. The photographs were taken under diffuse illumination (top row, imaged at normal incidence) and with specular illumination at 0° (middle row) and 45° (bottom row). (b) SEM images comparing the pore structure of photonic bricks with monodispersed (ordered, top) porosity with a = 350 nm and bidispersed (disordered, bottom) porosity with a1 = 350 nm, a2 = 240 nm.

Fig. 8
Fig. 8

(a) Representative variable-angle spectra of photonic bricks with different dimensions (height x width). All have 0.7% AuNS by matrix volume and ordered porosity (a = 350 nm). Photonic bricks were mounted on a flat substrate and spectra were taken with specular illumination (left column) and normal-incidence illumination (right column) with respect to the orientation of the substrate. (b) Angular distribution of scattering at normal incidence illumination (averaged over all wavelengths and 3 samples of each type). The full widths at half-maximum of these angular scattering distributions are: 95° (25 µm x 50 µm), 40° (50 µm x 50 µm), 15° (25 µm x 100 µm), and 14° (freeform).

Fig. 9
Fig. 9

Images of the Olympic rings formed from different types of photonic bricks, illustrating different combinations of hues and effects, imaged from normal incidence under diffuse illumination (a) and at 0° and 45° under specular illumination (b): Background is provided by the freeform photonic bricks with disordered bidispersed porosity (a1 = 240 nm, a2 = 350 nm) containing no plasmonic absorber and appearing as matte white with no significant sparkle or color travel in all images; (i) – freeform photonic bricks with ordered porosity (a = 240 nm) and containing 0.35% (by matrix volume) Ag nanoplates (λabs ~650 nm), appearing blue from all angles with a blue sparkle also observable in specular reflection; (ii) – a mixture of freeform photonic bricks, all having ordered porosity (a = 350 nm), half of which contain 0.15% AuNS (by matrix volume) and the other half - no plasmonic absorber, appearing pale under diffuse illumination with more of a red shine under specular illumination at 0°, which blueshifts to a blue-green at 45°; (iii) – freeform photonic bricks with ordered porosity (a = 300 nm) containing 2.4% AuNS (by matrix volume), displaying a deep red hue along with a green iridescence at 0° which becomes blue at 45°; (iv) – freeform photonic bricks with ordered porosity (a = 300 nm) containing no plasmonic absorber, appearing pale green under diffuse illumination and having a strong green iridescence at 0°, which becomes blue at 45°; (v) – freeform photonic bricks with ordered porosity (a = 350 nm) containing 0.7% AuNS (by matrix volume), displaying a bright red hue along with a red iridescence at 0°, which becomes green at 45°.

Fig. 10
Fig. 10

(a,b) Maintaining color in formulation. Two sets of photographs (diffuse illumination) comparing non-functionalized photonic bricks (left in each set) with those functionalized with 1H,1H,2H,2H-tridecafluorooctyl trichlorosilane (13FS) (right in each set) when immersed in mineral oil (a) and UV-curable epoxy resin (B, UVO-114, imaged following UV-curing). All four samples are freeform photonic bricks with a = 350 nm and 0.7% AuNS content (by matrix volume). This functionalization allows the air porosity to be maintained in liquid formulations, critical for maintaining their optical appearance. (c,d) Adaptive paints. Photographs (diffuse illumination) of freeform photonic bricks (all with a = 350 nm) painted onto a surface with patterns of color and patterned surface chemistry, revealing different images when wet and dry. (c) Pattern of color: i,ii – Freeform photonic bricks with no plasmonic absorber, iii, iv – freeform with 0.7% AuNS content (by matrix volume); Pattern of surface functionalization: i,iv - not functionalized, ii,iii – 13FS-functionalized. When immersed in water, brightness of color dramatically diminishes in only the non-functionalized regions where the air pores have become filled. (d) A more complex color pattern produced by varying AuNS content (i – 1.3%, ii – 0.4%, iii – 0.7%, iv – 0%) showing the same region-selective color change in water. Color is retained in regions that were selectively functionalized with 13FS (all of region i, and the portions of regions iii and iv that remain bright in water).

Metrics