Abstract

This paper demonstrates the application of ultra-precision cutting to the fabrication of ridged LiNbO3 waveguides for use in low-loss photonic integrated circuits. Ridged waveguides with sidewall verticality of 88° and ultra-smooth sidewalls were obtained in LiNbO3 crystals using this technique. In addition, the possibility of fabricating bent ridged waveguides via this mechanical micromachining method was examined. The root mean square surface roughness of the machined sidewall was 4.5 nm over an area of 2.5 × 10 µm, which is sufficiently low so as to minimize scattering losses of guided light. The propagation loss of the ridged waveguide produced during this work was well below 1 dB/cm at a wavelength of 1550 nm. The present technique should have significant applicability to the micromachining of ferroelectric materials and the fabrication of highly confined optical waveguides such as ridged waveguides and photonic wires.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening

Shawn Yohanes Siew, Eric Jun Hao Cheung, Haidong Liang, Andrew Bettiol, Noriaki Toyoda, Bandar Alshehri, Elhadj Dogheche, and Aaron J. Danner
Opt. Express 26(4) 4421-4430 (2018)

Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler
Opt. Express 17(5) 3923-3928 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Izutsu, Y. Yamane, and T. Sueta, “Broadband traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron. 13(4), 287–290 (1977).
    [Crossref]
  2. H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5(7), 901–905 (1987).
    [Crossref]
  3. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174 (1989).
    [Crossref]
  4. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
    [Crossref]
  5. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between LiNbO3 optical modulators and Si micromachined substrates,” Opt. Express 19, 15739–15749 (2011).
    [Crossref] [PubMed]
  6. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [Crossref]
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
    [Crossref]
  8. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref] [PubMed]
  9. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti: LiNbO3 optical mudulator with a ridge structure,” J. Lightwave Technol. 13(6), 1164–1168 (1995).
    [Crossref]
  10. H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).
  11. D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
    [Crossref]
  12. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
    [Crossref]
  13. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
    [Crossref]
  14. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
    [Crossref]
  15. V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabricated low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
    [Crossref]
  16. Y. Tan and F. Chen, “Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching,” Opt. Express 18(11), 11444–11449 (2010).
    [Crossref] [PubMed]
  17. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
    [Crossref]
  18. D. M. Gill, D. Jacobson, C. A. White, C. D. W. Jones, Y. Shi, W. J. Minford, and A. Harris, “Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technology,” J. Lightwave Technol. 22(3), 887–894 (2004).
    [Crossref]
  19. H. Hartung, E. B. Kley, A. Tünnermann, T. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008).
    [Crossref] [PubMed]
  20. J. H. Zhao, X. H. Liu, P. Liu, and X. L. Wang, “Lithium niobate ridged waveguide fabricated by ion implantation followed by ion beam etching,” J. Lightwave Technol. 28, 1913 (2010).
  21. P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
    [Crossref]
  22. K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
    [Crossref]
  23. M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
    [Crossref]
  24. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  25. T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced Z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
    [Crossref]
  26. D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys., A Mater. Sci. Process. 86(1), 49–54 (2007).
    [Crossref]
  27. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn: LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [Crossref] [PubMed]
  28. J. Sun, Y. Gan, and C. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett. 36(4), 549–551 (2011).
    [Crossref] [PubMed]
  29. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  30. G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
    [Crossref]
  31. Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
    [Crossref]
  32. T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra precision micro structuring by means of mechanical machining,” in Proc. the 14th IEEE Int. Conf. Micro Electro Mechanical System (2001), 35, 22.
    [Crossref]
  33. Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5 axis control ultraprecision machining,” Int. J. Adv. Manuf. Tecchnol. 35, 403 (2003).
  34. T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
    [Crossref]
  35. P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
    [Crossref]
  36. R. G. Hunsberger, Integrated Optics Theory and Technology (Springer, 1985), Chap. 5, pp. 83–86.

2013 (1)

2012 (1)

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

2011 (5)

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

J. Sun, Y. Gan, and C. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett. 36(4), 549–551 (2011).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between LiNbO3 optical modulators and Si micromachined substrates,” Opt. Express 19, 15739–15749 (2011).
[Crossref] [PubMed]

2010 (5)

Y. Tan and F. Chen, “Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching,” Opt. Express 18(11), 11444–11449 (2010).
[Crossref] [PubMed]

J. H. Zhao, X. H. Liu, P. Liu, and X. L. Wang, “Lithium niobate ridged waveguide fabricated by ion implantation followed by ion beam etching,” J. Lightwave Technol. 28, 1913 (2010).

T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
[Crossref]

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

2009 (3)

2008 (2)

H. Hartung, E. B. Kley, A. Tünnermann, T. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008).
[Crossref] [PubMed]

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

2007 (6)

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabricated low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
[Crossref]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys., A Mater. Sci. Process. 86(1), 49–54 (2007).
[Crossref]

2006 (1)

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

2005 (1)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

2004 (1)

2003 (1)

Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5 axis control ultraprecision machining,” Int. J. Adv. Manuf. Tecchnol. 35, 403 (2003).

2000 (2)

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced Z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
[Crossref]

1998 (1)

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).

1995 (1)

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti: LiNbO3 optical mudulator with a ridge structure,” J. Lightwave Technol. 13(6), 1164–1168 (1995).
[Crossref]

1989 (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174 (1989).
[Crossref]

1987 (1)

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5(7), 901–905 (1987).
[Crossref]

1977 (1)

M. Izutsu, Y. Yamane, and T. Sueta, “Broadband traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron. 13(4), 287–290 (1977).
[Crossref]

Allen, D. M.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Asobe, M.

Astolfi, M.

Benchabane, S.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

Bentini, G. G.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Bernal, M.-P.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bianconi, M.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Borsetto, M.

Byer, R. L.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174 (1989).
[Crossref]

Chen, F.

Chiarini, M.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Consonni, G.

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

Danner, A. J.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Degl’innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

DeNicola, P.

Dobrusin, V.

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabricated low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
[Crossref]

Fejer, M. M.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174 (1989).
[Crossref]

Gan, Y.

Gill, D. M.

Gischkat, T.

Guangyuan, S.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

Guichardaz, B.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Gunter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

Haga, E. M.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).

Hänsch, T. W.

Harris, A.

Hartung, H.

Haruna, M.

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5(7), 901–905 (1987).
[Crossref]

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Hermann, H.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

Higurashi, E.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between LiNbO3 optical modulators and Si micromachined substrates,” Opt. Express 19, 15739–15749 (2011).
[Crossref] [PubMed]

Ho, A.

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

Hong, F. L.

Hoogstrate, A. M.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

Ijima, K.

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

Ishida, T.

T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
[Crossref]

Izutsu, M.

M. Izutsu, Y. Yamane, and T. Sueta, “Broadband traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron. 13(4), 287–290 (1977).
[Crossref]

Jacobson, D.

Jones, C. D. W.

Jun, D.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Kawanishi, T.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between LiNbO3 optical modulators and Si micromachined substrates,” Opt. Express 19, 15739–15749 (2011).
[Crossref] [PubMed]

Kley, E. B.

Langen, H. H.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Levy, M.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced Z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

Li, P.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Lim, E. J.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174 (1989).
[Crossref]

Liu, P.

Liu, X. H.

Longone, R.

Lu, H.-H.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Menin, A.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Meroni, A.

Milenin, A. P.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

Minford, W. J.

Mitomi, O.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti: LiNbO3 optical mudulator with a ridge structure,” J. Lightwave Technol. 13(6), 1164–1168 (1995).
[Crossref]

Mitsugi, N.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).

Mitsui, N.

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

Miyazawa, H.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti: LiNbO3 optical mudulator with a ridge structure,” J. Lightwave Technol. 13(6), 1164–1168 (1995).
[Crossref]

Montanari, G. B.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Moriya, T.

T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
[Crossref]

Nagata, H.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).

Nakamoto, K.

T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
[Crossref]

Nelson, K. A.

D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys., A Mater. Sci. Process. 86(1), 49–54 (2007).
[Crossref]

Nicola, P. D.

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Nishida, Y.

Nishihara, H.

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5(7), 901–905 (1987).
[Crossref]

Nishikawa, T.

Noguchi, K.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti: LiNbO3 optical mudulator with a ridge structure,” J. Lightwave Technol. 13(6), 1164–1168 (1995).
[Crossref]

Nubile, A.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Oosterling, J. A. J.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Osgood, R. M.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced Z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

Ozawa, A.

Png, C. E.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

Queste, S.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced Z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

Rauch, J. Y.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Ruschin, S.

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabricated low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
[Crossref]

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Saito, Y.

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

Sakaida, H.

Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
[Crossref]

Sata, T.

Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
[Crossref]

Sawada, K.

Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5 axis control ultraprecision machining,” Int. J. Adv. Manuf. Tecchnol. 35, 403 (2003).

Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
[Crossref]

Schmidt, R. H. M.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Schrempel, F.

Seki, S.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti: LiNbO3 optical mudulator with a ridge structure,” J. Lightwave Technol. 13(6), 1164–1168 (1995).
[Crossref]

Shi, Y.

Shima, K.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).

Shpisman, L.

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabricated low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
[Crossref]

Sohler, W.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

Son, J.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Statz, E. R.

D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys., A Mater. Sci. Process. 86(1), 49–54 (2007).
[Crossref]

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Sueta, T.

M. Izutsu, Y. Yamane, and T. Sueta, “Broadband traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron. 13(4), 287–290 (1977).
[Crossref]

Suga, T.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between LiNbO3 optical modulators and Si micromachined substrates,” Opt. Express 19, 15739–15749 (2011).
[Crossref] [PubMed]

Sugliani, S.

P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Sun, J.

Takeuchi, Y.

T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
[Crossref]

Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5 axis control ultraprecision machining,” Int. J. Adv. Manuf. Tecchnol. 35, 403 (2003).

Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
[Crossref]

Takigawa, R.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between LiNbO3 optical modulators and Si micromachined substrates,” Opt. Express 19, 15739–15749 (2011).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

Tamai, M.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Lightwave Technol. 187, 573–576 (1998).

Tan, Y.

Taniguchi, S.

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Toda, H.

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5(7), 901–905 (1987).
[Crossref]

Tünnermann, A.

Ulliac, G.

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Vergani, P.

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, X. L.

J. H. Zhao, X. H. Liu, P. Liu, and X. L. Wang, “Lithium niobate ridged waveguide fabricated by ion implantation followed by ion beam etching,” J. Lightwave Technol. 28, 1913 (2010).

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Ward, D. W.

D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys., A Mater. Sci. Process. 86(1), 49–54 (2007).
[Crossref]

Wehrspohn, R. B.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

Wei, J.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Wesch, W.

White, C. A.

Xu, C.

Yamanaka, J.

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

Yamane, Y.

M. Izutsu, Y. Yamane, and T. Sueta, “Broadband traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron. 13(4), 287–290 (1977).
[Crossref]

Yang, H.

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Yonekura, H.

Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5 axis control ultraprecision machining,” Int. J. Adv. Manuf. Tecchnol. 35, 403 (2003).

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Zdebski, D.

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

Zhao, J. H.

Appl. Phys. B (1)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Appl. Phys. Lett. (2)

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced Z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys., A Mater. Sci. Process. 86(1), 49–54 (2007).
[Crossref]

CIRP Ann. (2)

Y. Takeuchi, H. Sakaida, K. Sawada, and T. Sata, “Development of 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanism,” CIRP Ann. 49(1), 295–298 (2000).
[Crossref]

T. Moriya, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Creation of V-shaped microgrooves with flat-ends by 6 axis control ultraprecision machining,” CIRP Ann. 59(1), 61–66 (2010).
[Crossref]

Electron. Lett. (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Izutsu, Y. Yamane, and T. Sueta, “Broadband traveling-wave modulator using a LiNbO3 optical waveguide,” IEEE J. Quantum Electron. 13(4), 287–290 (1977).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Int. J. Adv. Manuf. Tecchnol. (1)

Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5 axis control ultraprecision machining,” Int. J. Adv. Manuf. Tecchnol. 35, 403 (2003).

J. Appl. Phys. (1)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. Phys. “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

J. Lightwave Technol. (6)

J. Micromech. Microeng. (1)

P. Li, D. Zdebski, H. H. Langen, A. M. Hoogstrate, J. A. J. Oosterling, R. H. M. Schmidt, and D. M. Allen, “Micromilling of thin ribs with high aspect ratios,” J. Micromech. Microeng. 20(11), 115013 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

J. Vac. Sci. Technol. A (1)

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24(4), 1012 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, “Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas,” J. Vac. Sci. Technol. B 30(1), 011208 (2012).
[Crossref]

Microelectron. Eng. (1)

G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectron. Eng. 88(8), 2417–2419 (2011).
[Crossref]

Nat. Photon. (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1(7), 407–410 (2007).
[Crossref]

Nucl. Instrum. Methods B (2)

K. Ijima, N. Mitsui, A. Ho, J. Yamanaka, S. Taniguchi, and Y. Saito, “Observation of voids formed by annealing in LiNbO3 implanted with Cu ions,” Nucl. Instrum. Methods B 257(1–2), 472–475 (2007).
[Crossref]

M. Bianconi, G. G. Bentini, M. Chiarini, P. D. Nicola, G. B. Montanari, A. Menin, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods B 267(17), 2839–2845 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (2)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

V. Dobrusin, S. Ruschin, and L. Shpisman, “Fabricated low-loss large single mode ridge Ti:LiNbO3 waveguides,” Opt. Mater. 29(12), 1630–1634 (2007).
[Crossref]

Other (2)

R. G. Hunsberger, Integrated Optics Theory and Technology (Springer, 1985), Chap. 5, pp. 83–86.

T. Kawai, K. Sawada, and Y. Takeuchi, “Ultra precision micro structuring by means of mechanical machining,” in Proc. the 14th IEEE Int. Conf. Micro Electro Mechanical System (2001), 35, 22.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A diagram of the ultra-precision cutting apparatus.
Fig. 2
Fig. 2 A photographic image of a single-crystal diamond tool.
Fig. 3
Fig. 3 Diagram and SEM images of a LiNbO3 ridged waveguide.
Fig. 4
Fig. 4 Images of a bent ridged waveguide formed from a LiNbO3 crystal: (a) top view and (b) edge view.
Fig. 5
Fig. 5 Heightmaps of the machined surfaces (measured area: 2.5 × 10 µm): (a) the bottom of the microgroove, and (b) the sidewall. Images (b-1) and (b-2) show cross-sections A-A' and B-B' in (b).
Fig. 6
Fig. 6 The near-field patterns of the LiNbO3 ridged waveguide.

Metrics