Abstract

At the zigzag edge of a magnetic photonic crystal with honeycomb lattice, the nonreciprocal surface modes (NSMs) could appear below the magnetic surface plasmon (MSP) frequency. The NSMs possess very flat slopes outside the light line, which is strikingly different from the nearly linear dispersion curve just above the MSP frequency and results in strong confinement and enhancement of the electromagnetic field. Particularly, an enhancement over 100 times in magnetic field is achieved because of the strong magnetic response arising from the MSP resonance. In addition, the branch of double-valued NSM dispersion curve provides zero group velocity away from the Brillouin zone boundary.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals

Zhen Li, Rui-xin Wu, Qing-Bo Li, Zhi-fang Lin, Yin Poo, Rong-Juan Liu, and Zhi-Yuan Li
Opt. Express 23(8) 9658-9663 (2015)

Enhanced nonreciprocal effects in magnetoplasmonic systems supporting simultaneously localized and propagating plasmons

R. Kekesi, D. Martín-Becerra, D. Meneses-Rodríguez, F. García-Pérez, A. Cebollada, and G. Armelles
Opt. Express 23(6) 8128-8133 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995).
    [Crossref]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  4. J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
    [Crossref]
  5. N. Ashcroft and N. Mermin, Solid State Physics (Saunders, 1976).
  6. C. Kittel, Introduction to Solid State Physics 5th ed. (Wiley, 1976).
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  8. T. Okada, M. Nagai, and K. Tanaka, “Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region,” Opt. Express 16(8), 5633–5641 (2008).
    [Crossref] [PubMed]
  9. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
    [Crossref] [PubMed]
  10. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [Crossref] [PubMed]
  11. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
    [Crossref] [PubMed]
  12. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [Crossref] [PubMed]
  13. Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
    [Crossref]
  14. S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
    [Crossref]
  15. A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
    [Crossref]
  16. D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. surface waves,” Opt. Spectrosc. 107(5), 803–810 (2009).
    [Crossref]
  17. A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
    [Crossref]
  18. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  19. S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
    [Crossref] [PubMed]
  20. J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
    [Crossref]
  21. S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
    [Crossref]
  22. X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
    [Crossref]
  23. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [Crossref] [PubMed]

2014 (1)

X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
[Crossref]

2012 (1)

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

2011 (1)

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

2010 (2)

S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

2009 (3)

J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
[Crossref]

D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. surface waves,” Opt. Spectrosc. 107(5), 803–810 (2009).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

2008 (5)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

T. Okada, M. Nagai, and K. Tanaka, “Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region,” Opt. Express 16(8), 5633–5641 (2008).
[Crossref] [PubMed]

2007 (1)

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

2005 (1)

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

2003 (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1995 (1)

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995).
[Crossref]

1973 (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Brewer, R.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

Burstein, E.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

Chan, C. T.

X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

Chen, W.

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Chui, S. T.

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
[Crossref]

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Du, J.

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Haes, A.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Harris, R. D.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995).
[Crossref]

Hartstein, A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

Haynes, C.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Huang, X.

X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
[Crossref]

Jin, J.

J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
[Crossref]

Joannopoulos, J. D.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kulagin, D. V.

D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. surface waves,” Opt. Spectrosc. 107(5), 803–810 (2009).
[Crossref]

Lin, Z.

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
[Crossref]

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

Liu, S.

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
[Crossref]

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

Lu, W.

S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

Maradudin, A. A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

McFarland, A.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Nagai, M.

Nakano, H.

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

Okada, T.

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Poo, Y.

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Savchenko, A. S.

D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. surface waves,” Opt. Spectrosc. 107(5), 803–810 (2009).
[Crossref]

Schatz, G.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Shibayama, J.

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

Soljacic, M.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Takagi, S.

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

Tanaka, K.

Tarasenko, S. V.

D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. surface waves,” Opt. Spectrosc. 107(5), 803–810 (2009).
[Crossref]

Van Duyne, R.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wallis, R. F.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wilkinson, J. S.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995).
[Crossref]

Wu, R.

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

Wu, R. X.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Xiao, M.

X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
[Crossref]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Yamauchi, J.

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

Yamazaki, T.

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

Yang, Y.

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Zhang, Z.

X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
[Crossref]

Zou, S.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. Poo, R. Wu, S. Liu, Y. Yang, Z. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

S. Liu, W. Lu, Z. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

IEICE Trans. Electron. (1)

J. Shibayama, S. Takagi, T. Yamazaki, J. Yamauchi, and H. Nakano, “Numerical analysis of waveguide based surface plasmon resonance sensor with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

J. Phys. C Solid State Phys. (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6(7), 1266–1276 (1973).
[Crossref]

MRS Bull. (1)

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(05), 368–375 (2005).
[Crossref]

Nano Lett. (1)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Nature (2)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Spectrosc. (1)

D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. surface waves,” Opt. Spectrosc. 107(5), 803–810 (2009).
[Crossref]

Phys. Rev. B (3)

J. Jin, S. Liu, Z. Lin, and S. T. Chui, “Effective-medium theory for anisotropic magnetic metamaterials,” Phys. Rev. B 80(11), 115101 (2009).
[Crossref]

S. Liu, J. Du, Z. Lin, R. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

X. Huang, M. Xiao, Z. Zhang, and C. T. Chan, “Sufficient condition for the existence of interface states in some two-dimensional photonic crystals,” Phys. Rev. B 90(7), 075423 (2014).
[Crossref]

Phys. Rev. Lett. (6)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett. 101(15), 157407 (2008).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995).
[Crossref]

Other (2)

N. Ashcroft and N. Mermin, Solid State Physics (Saunders, 1976).

C. Kittel, Introduction to Solid State Physics 5th ed. (Wiley, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the truncated MPC. Mg-Mn ferrite rods (blue column) are arranged in air background with honeycomb lattice. The lower part of the MPC is truncated with a zigzag edge. (b) Projected band structures of the truncated MPC along zigzag edge at H0 = 600 Oe. The cyan area represents the bulk modes. The red dots show the surface modes. The light cone is shaded by the grey area.
Fig. 2
Fig. 2 The magnitude of electric and magnetic field distributions at (a) and (d) 4.61 GHz located below MSP resonance, (b) and (e) 5.6 GHz located above MSP resonance, and those at (c) and (f) 15.85 GHz MSP-irrelevant. The line source is marked by the blue cursor ‘ + ’ in each panel. The left column describes the electric field and the right one presents the magnetic field.
Fig. 3
Fig. 3 The magnitude of electric field (a)-(c) and magnetic field (d)-(f) along the line (y = −1.3a) very close to the zigzag edge at frequency 4.61 GHz (a) and (d), 5.6 GHz (b) and (e), 15.72 GHz (c) and (f). The line source position is still defined as (0,0).
Fig. 4
Fig. 4 The magnitude of the magnetic field distribution of NSMs above the critical frequency ωc = 4.643 GHz. The working frequencies are (a) 4.648 GHz, and (b) 4.649 GHz.
Fig. 5
Fig. 5 The power flow distributions of the leftward propagation wave at two kinds defects. (a) a ferrite rod is replaced by a magnetic rod which has the same permeability with the ferrite but different permittivity εd = 25; (b) a ferrite rod is replaced by a metal rod. The working frequency is 4.61 GHz, the other parameters are the same with those in Figs. 2 and 3. Both the defects have the same size as the ferrite rod and are marked with red circles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ ¯ = μ 0 [ μ jκ 0 jκ μ 0 0 0 1 ],

Metrics