Abstract

We demonstrate the use of fiber Bragg gratings (FBGs) as a monolithic temperature sensor from ambient to liquid nitrogen temperatures, without the use of any auxiliary embedding structure. The Bragg gratings, fabricated in three different types of fibers and characterized with a high density of points, confirm a nonlinear thermal sensitivity of the fibers. With a conventional interrogation scheme it is possible to have a resolution of 0.5 K for weak pure-silica-core FBGs and 0.25 K using both boron-doped and germanium-doped standard fibers at 77 K. We quantitatively show for the first time that the nonlinear thermal sensitivity of the FBG arises from the nonlinearity of both thermo-optic and thermal expansion coefficients, allowing consistent modeling of FBGs at low temperatures.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quadratic behavior of fiber Bragg grating temperature coefficients

Gordon M. H. Flockhart, Robert R. J. Maier, James S. Barton, William N. MacPherson, Julian D. C. Jones, Karen E. Chisholm, Lin Zhang, Ian Bennion, Ian Read, and Peter D. Foote
Appl. Opt. 43(13) 2744-2751 (2004)

Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions

Umesh Sampath, Daegil Kim, Hyunjin Kim, and Minho Song
Appl. Opt. 57(3) 492-497 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
    [Crossref]
  2. M. Ahlawat, B. Saoudi, E. Soares de Lima Filho, M. Wertheimer, and R. Kashyap, “Use of an FBG sensor for in-situ temperature measurements of gas dielectric barrier discharges,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), BTu2E.4.
  3. G. M. H. Flockhart, R. R. J. Maier, J. S. Barton, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, and P. D. Foote, “Quadratic behavior of fiber Bragg grating temperature coefficients,” Appl. Opt. 43(13), 2744–2751 (2004).
    [Crossref] [PubMed]
  4. R. Mahakud, J. Kumar, O. Prakash, and S. K. Dixit, “Study of the nonuniform behavior of temperature sensitivity in bare and embedded fiber Bragg gratings: experimental results and analysis,” Appl. Opt. 52(31), 7570–7579 (2013).
    [Crossref] [PubMed]
  5. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).
  6. M. B. Reid and M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37(1), 237–240 (1998).
    [Crossref]
  7. M. Toru, T. Hiroaki, and K. Hideo, “High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12(7), 914 (2001).
  8. H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
    [Crossref]
  9. E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21(21), 24711–24720 (2013).
    [Crossref] [PubMed]
  10. E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
    [Crossref]
  11. E. Soares de Lima Filho, M. Gagne, G. Nemova, R. Kashyap, M. Saad, and S. Bowman, “Sensing of laser cooling with optical fibres,” in 7th Workshop on Fibre and Optical Passive Components (IEEE,2011), 1–5.
    [Crossref]
  12. Y. Dai, M. Yang, G. Xu, and Y. Yuan, “Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser,” Opt. Express 21(14), 17386–17391 (2013).
    [Crossref] [PubMed]
  13. A. J. Wyk, L. S. Pieter, and A. C. Anatoli, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17(5), 1113–1117 (2006).
    [Crossref]
  14. M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008).
    [Crossref]
  15. S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
    [Crossref]
  16. R. Kashyap, Fiber Bragg Gratings (Academic, 2009).
  17. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  18. G. M. Flockhart, R. R. Maier, J. S. Barton, W. N. MacPherson, J. D. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, and P. D. Foote, “Quadratic behavior of fiber Bragg grating temperature coefficients,” Appl. Opt. 43(13), 2744–2751 (2004).
    [Crossref] [PubMed]
  19. M. Gagné and R. Kashyap, “New nanosecond q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
    [Crossref]
  20. T. J. Quinn, Temperature (Academic, 1983).
  21. P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
    [Crossref]
  22. W. H. Souder and P. Hidnert, Measurements on the thermal expansion of fused silica (US Government Printing Office, 1926).
  23. K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (John Wiley & Sons, 2012), Vol. 240.
  24. M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
    [Crossref]
  25. Y.-G. Han, Y. Chung, and S. B. Lee, “Compositional dependence of the temperature sensitivity in long-period fiber gratings with doping concentration of GeO2 and B2O3 and their applications,” Opt. Eng. 43(5), 1144–1147 (2004).
    [Crossref]
  26. D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
    [Crossref]
  27. W. Hermann, M. Hutjens, and D. U. Wiechert, “Stress in optical waveguides. 3: Stress induced index change,” Appl. Opt. 28(11), 1980–1983 (1989).
    [Crossref] [PubMed]
  28. E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).
  29. P. K. Bachmann, W. G. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 1: preforms,” Appl. Opt. 25(7), 1093–1098 (1986).
    [Crossref] [PubMed]
  30. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
    [Crossref]
  31. Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
    [Crossref]
  32. A. Koike and N. Sugimoto, “1. Temperature dependences of optical path length in inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd 56, 1–6 (2006).
  33. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
    [Crossref]

2014 (1)

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
[Crossref]

2013 (4)

2012 (1)

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

2011 (2)

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

2010 (1)

M. Gagné and R. Kashyap, “New nanosecond q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

2008 (1)

M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008).
[Crossref]

2007 (1)

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

2006 (3)

A. J. Wyk, L. S. Pieter, and A. C. Anatoli, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17(5), 1113–1117 (2006).
[Crossref]

A. Koike and N. Sugimoto, “1. Temperature dependences of optical path length in inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd 56, 1–6 (2006).

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

2004 (4)

G. M. Flockhart, R. R. Maier, J. S. Barton, W. N. MacPherson, J. D. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, and P. D. Foote, “Quadratic behavior of fiber Bragg grating temperature coefficients,” Appl. Opt. 43(13), 2744–2751 (2004).
[Crossref] [PubMed]

G. M. H. Flockhart, R. R. J. Maier, J. S. Barton, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, and P. D. Foote, “Quadratic behavior of fiber Bragg grating temperature coefficients,” Appl. Opt. 43(13), 2744–2751 (2004).
[Crossref] [PubMed]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Y.-G. Han, Y. Chung, and S. B. Lee, “Compositional dependence of the temperature sensitivity in long-period fiber gratings with doping concentration of GeO2 and B2O3 and their applications,” Opt. Eng. 43(5), 1144–1147 (2004).
[Crossref]

2001 (2)

M. Toru, T. Hiroaki, and K. Hideo, “High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12(7), 914 (2001).

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

1998 (1)

M. B. Reid and M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37(1), 237–240 (1998).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1995 (1)

M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
[Crossref]

1989 (1)

1988 (1)

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

1986 (1)

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

Abeywickrema, U.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Adamovsky, G.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Anatoli, A. C.

A. J. Wyk, L. S. Pieter, and A. C. Anatoli, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17(5), 1113–1117 (2006).
[Crossref]

Bachmann, P. K.

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

P. K. Bachmann, W. G. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 1: preforms,” Appl. Opt. 25(7), 1093–1098 (1986).
[Crossref] [PubMed]

Barton, J. S.

Baxter, G. W.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Bechou, L.

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

Bennion, I.

Bensoussan, A.

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

Chisholm, K. E.

Chung, Y.

Y.-G. Han, Y. Chung, and S. B. Lee, “Compositional dependence of the temperature sensitivity in long-period fiber gratings with doping concentration of GeO2 and B2O3 and their applications,” Opt. Eng. 43(5), 1144–1147 (2004).
[Crossref]

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

Collins, S. F.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Dai, Y.

DeHaven, S. L.

M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008).
[Crossref]

Dipankar, S. G.

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

Dixit, S. K.

Dussardier, B.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Fedin, I.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Flockhart, G. M.

Flockhart, G. M. H.

Floyd, B. M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Foote, P. D.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

Gagné, M.

M. Gagné and R. Kashyap, “New nanosecond q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

Grattan, K. T. V.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Gu, C.

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

Han, W.-T.

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

Han, Y.-G.

Y.-G. Han, Y. Chung, and S. B. Lee, “Compositional dependence of the temperature sensitivity in long-period fiber gratings with doping concentration of GeO2 and B2O3 and their applications,” Opt. Eng. 43(5), 1144–1147 (2004).
[Crossref]

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

Hermann, W.

Hermann, W. G.

Hideo, K.

M. Toru, T. Hiroaki, and K. Hideo, “High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12(7), 914 (2001).

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hiroaki, T.

M. Toru, T. Hiroaki, and K. Hideo, “High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12(7), 914 (2001).

Hutjens, M.

Jones, J. D.

Jones, J. D. C.

Kamineni, S.

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

Kang, S.

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

Kashyap, R.

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
[Crossref]

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21(21), 24711–24720 (2013).
[Crossref] [PubMed]

M. Gagné and R. Kashyap, “New nanosecond q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

Kato, H.

M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
[Crossref]

Kim, C.-S.

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

Koike, A.

A. Koike and N. Sugimoto, “1. Temperature dependences of optical path length in inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd 56, 1–6 (2006).

Kumar, J.

Lee, B. H.

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

Lee, S. B.

Y.-G. Han, Y. Chung, and S. B. Lee, “Compositional dependence of the temperature sensitivity in long-period fiber gratings with doping concentration of GeO2 and B2O3 and their applications,” Opt. Eng. 43(5), 1144–1147 (2004).
[Crossref]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

Loranger, S.

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
[Crossref]

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21(21), 24711–24720 (2013).
[Crossref] [PubMed]

Lyuksyutov, S. F.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Mackey, J. R.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

MacPherson, W. N.

Mahakud, R.

Maier, R. R.

Maier, R. R. J.

Meeuwsen, T. P. M.

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mizuno, K.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Monnom, G.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Nagashima, K.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Nara, K.

M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
[Crossref]

Nemova, G.

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
[Crossref]

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21(21), 24711–24720 (2013).
[Crossref] [PubMed]

Nicolics, J.

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

Nikogosyan, D. N.

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

Ogata, M.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Okaji, M.

M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
[Crossref]

Okumura, S.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Ozcan, M.

M. B. Reid and M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37(1), 237–240 (1998).
[Crossref]

Paek, U.-C.

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

Pal, S.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Parne, S.

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

Pater, R. H.

M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008).
[Crossref]

Pieter, L. S.

A. J. Wyk, L. S. Pieter, and A. C. Anatoli, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17(5), 1113–1117 (2006).
[Crossref]

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

Prakash, O.

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

Rackaitis, M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Read, I.

Reid, M. B.

M. B. Reid and M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37(1), 237–240 (1998).
[Crossref]

Sai Prasad, R.

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

Sai Shankar, M.

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

Soares de Lima Filho, E.

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
[Crossref]

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21(21), 24711–24720 (2013).
[Crossref] [PubMed]

Sugimoto, N.

A. Koike and N. Sugimoto, “1. Temperature dependences of optical path length in inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd 56, 1–6 (2006).

Suhir, E.

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

Sun, T.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Tanaka, Y.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Terada, Y.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Toru, M.

M. Toru, T. Hiroaki, and K. Hideo, “High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12(7), 914 (2001).

Wade, S. A.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Wehr, H.

Wiechert, D. U.

Wu, M.-C.

M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008).
[Crossref]

Wyk, A. J.

A. J. Wyk, L. S. Pieter, and A. C. Anatoli, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17(5), 1113–1117 (2006).
[Crossref]

Xu, G.

Yamada, H.

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Yamada, N.

M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
[Crossref]

Yang, M.

Yuan, Y.

Zhang, L.

Appl. Opt. (5)

Cryogenics (1)

M. Okaji, N. Yamada, K. Nara, and H. Kato, “Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739,” Cryogenics 35(12), 887–891 (1995).
[Crossref]

Fiber Integrated Opt. (1)

Y.-G. Han, W.-T. Han, B. H. Lee, U.-C. Paek, Y. Chung, and C.-S. Kim, “Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings,” Fiber Integrated Opt. 20(6), 591–600 (2001).
[Crossref]

J. Appl. Phys. (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[Crossref]

J. Elec. Cont. Eng. (1)

E. Suhir, S. Kang, J. Nicolics, C. Gu, A. Bensoussan, and L. Bechou, “Predicted thermal stresses in a cylindrical tri-material body, with application to optical fibers embedded into silicon,” J. Elec. Cont. Eng. 3(6), 9–16 (2013).

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

J. Mater. Sci. (1)

P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Meas. Sci. Technol. (3)

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

A. J. Wyk, L. S. Pieter, and A. C. Anatoli, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17(5), 1113–1117 (2006).
[Crossref]

M. Toru, T. Hiroaki, and K. Hideo, “High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12(7), 914 (2001).

Microw. Opt. Technol. Lett. (1)

S. Parne, R. Sai Prasad, S. G. Dipankar, M. Sai Shankar, and S. Kamineni, “Polymer‐coated fiber Bragg grating sensor for cryogenic temperature measurements,” Microw. Opt. Technol. Lett. 53(5), 1154–1157 (2011).
[Crossref]

Opt. Commun. (2)

M. Gagné and R. Kashyap, “New nanosecond q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[Crossref]

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Opt. Eng. (2)

M. B. Reid and M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37(1), 237–240 (1998).
[Crossref]

Y.-G. Han, Y. Chung, and S. B. Lee, “Compositional dependence of the temperature sensitivity in long-period fiber gratings with doping concentration of GeO2 and B2O3 and their applications,” Opt. Eng. 43(5), 1144–1147 (2004).
[Crossref]

Opt. Express (2)

Physica C (1)

H. Yamada, Y. Tanaka, M. Ogata, K. Mizuno, K. Nagashima, S. Okumura, and Y. Terada, “Measurement and improvement of characteristics using optical fiber temperature sensors at cryogenic temperatures,” Physica C 471(21–22), 1570–1575 (2011).
[Crossref]

Proc. SPIE (3)

E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber Bragg grating,” Proc. SPIE 9000, 90000I (2014).
[Crossref]

M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008).
[Crossref]

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

Reports Res. Lab. Asahi Glass Co, Ltd (1)

A. Koike and N. Sugimoto, “1. Temperature dependences of optical path length in inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd 56, 1–6 (2006).

Sensor. Actuat. A-Phys. (1)

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures,” Sensor. Actuat. A-Phys. 112(2–3), 211–219 (2004).

Other (6)

M. Ahlawat, B. Saoudi, E. Soares de Lima Filho, M. Wertheimer, and R. Kashyap, “Use of an FBG sensor for in-situ temperature measurements of gas dielectric barrier discharges,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), BTu2E.4.

E. Soares de Lima Filho, M. Gagne, G. Nemova, R. Kashyap, M. Saad, and S. Bowman, “Sensing of laser cooling with optical fibres,” in 7th Workshop on Fibre and Optical Passive Components (IEEE,2011), 1–5.
[Crossref]

T. J. Quinn, Temperature (Academic, 1983).

R. Kashyap, Fiber Bragg Gratings (Academic, 2009).

W. H. Souder and P. Hidnert, Measurements on the thermal expansion of fused silica (US Government Printing Office, 1926).

K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (John Wiley & Sons, 2012), Vol. 240.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Spectra of the fabricated FBGs. Bottom and left axes: Transmission of the BorFBG and GerFBG. Top and right axes: Reflection of the PurFBG, normalized to the profile of the probe.
Fig. 2
Fig. 2 Temperature control microchamber diagram. The diagram of the Bragg wavelength interrogator with broadband signal (BWIBS) is shown in Fig. 3.
Fig. 3
Fig. 3 A schematic diagram of the Bragg wavelength interrogator with broadband signal (BWIBS) and a FBG.
Fig. 4
Fig. 4 Total Bragg wavelength shift as a function of the RTD temperature, as recovered by the F6 method for the three FBGs and by the THR method for the BorFBG (in blue color). The abscissa error is smaller than the graph line width.
Fig. 5
Fig. 5 Temperature dependence of the three FBGs’ sensitivity. (a) Bragg wavelength temperature derivative, ΨT for the three fibers, from the adjusted curves. (b) The Bragg wavelength thermal coefficient ξ, also for the three fibers tested.
Fig. 6
Fig. 6 Temperature dependence of the thermo-optic coefficient of different FBGs. (a) The thermo-optic coefficient of BorFBG and GerFBG, as well as of FS7980 at the wavelength corresponding to the Bragg wavelength of the BorFBG and GerFBG at the temperature T. (b) The fractional difference of the thermo-optic coefficient ζ of both FBGs compared to FS7980, ζFS.
Fig. 7
Fig. 7 Dependence of the thermal expansion coefficient with temperature, for the PurFBG as well as for other references. Pure fused SiO2: SRM 739 [24], and Yamada [8]. Interpolation for 1.4 at. % fluorine concentration from Koike [32], and extrapolation for temperature (dashed line): F:SiO2.
Fig. 8
Fig. 8 (a) Predicted temperature drop as a function of the measured Bragg wavelength shift, with a zoom for the ΔT < −180 K region shown in the inset. (b) Temperature error from different models as a function of the measured temperature in the PurFBG.

Tables (3)

Tables Icon

Table 1 Studies on the temperature sensitivity of FBGs

Tables Icon

Table 2 FBG’s details

Tables Icon

Table 3 Bragg wavelength coefficients

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ B =2 n eff Λ.
δ λ B = d λ B dX δX=2( Λ d n eff dX + n eff dΛ dX )δX = λ B ( 1 n eff d n eff dX + 1 Λ dΛ dX )δX= λ B ( α n,X + α Λ,X )δX,
δ λ B = λ B ( α n,T + α Λ,T )δT= λ B ( ζ+ α L )δT λ B ξ×δT,
δ λ B Ψ T δT,
ΔT= 1 Ψ T (T) d λ B Ψ ¯ T 1 Δ λ B .
Ψ T (T)= λ B ( T ) T | T = p=1 3 p λ p T p1 , ξ(T)= Ψ T (T) λ B (T) = p=1 3 p λ p T p1 p=0 3 λ p T p .
α F:SiO2 (T, C F )= p,q=1 p,q={6,5} γ pq T p1 C F q1 [ K p . (wt. ppm) 1q ] , γ=( 2.341× 10 6 1001× 10 7 0.01155 1.261 31.32 2.015× 10 8 6.376× 10 7 2.803× 10 5 0.004 0.06211 5.557× 10 11 2.092× 10 9 4.146× 10 8 2.516× 10 6 0 8.334× 10 14 4.87× 10 12 9.719× 10 11 0 0 7.357× 10 17 3.187× 10 20 4.727× 10 15 0 0 0 0 0 0 0 ),

Metrics