Abstract

We numerically investigate nonlinear self-polarization flipping in a silicon waveguide. We identify specific silicon waveguide geometries that enhance this effect to facilitate its fabrication and experimental demonstration by varying various parameters such as fabrication distortion, waveguide loss, dispersion and laser noise to design the silicon waveguide. In optimized waveguides, we show that nonlinear self-polarization flipping can be observed with few tens of watts peak power pulses with widths as short as 60 ps and laser noise level as large as 7%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects

Brian A. Daniel and Govind P. Agrawal
J. Opt. Soc. Am. B 27(5) 956-965 (2010)

Sub-micron silicon nitride waveguide fabrication using conventional optical lithography

Yuewang Huang, Qiancheng Zhao, Lobna Kamyab, Ali Rostami, Filippo Capolino, and Ozdal Boyraz
Opt. Express 23(5) 6780-6786 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref] [PubMed]
  2. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
    [Crossref] [PubMed]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  4. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol. 28, 2499–2511 (2010).
    [Crossref]
  5. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36, 1263–1265 (2011).
    [Crossref] [PubMed]
  6. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
    [Crossref]
  7. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
    [Crossref] [PubMed]
  8. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  9. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2r-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001).
    [Crossref]
  10. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
    [Crossref] [PubMed]
  11. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
    [Crossref] [PubMed]
  12. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
    [Crossref]
  13. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19, 66–80 (2011).
    [Crossref] [PubMed]
  14. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [Crossref] [PubMed]
  15. M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated raman scattering,” Opt. Express 17, 11565–11581 (2009).
    [Crossref] [PubMed]
  16. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
    [Crossref]
  17. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
    [Crossref]
  18. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in “Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,” (OSA2011), paper C370.
  19. S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
    [Crossref] [PubMed]
  20. S. Afshar V., W. Zhang, and T. M. Monro, “Experimental confirmation of a generalized definition of the effective nonlinear coefficient in emerging waveguides with subwavelength structures,” in “Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference 2009,” (OSA2009), OSA Technical Digest (CD), paper CThBB6.
  21. W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization bistability in optical nanowires,” Opt. Lett. 36, 588–590 (2011).
    [Crossref] [PubMed]

2012 (2)

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
[Crossref]

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

2009 (5)

S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
[Crossref] [PubMed]

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref] [PubMed]

M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated raman scattering,” Opt. Express 17, 11565–11581 (2009).
[Crossref] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

2004 (3)

2002 (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

2001 (1)

Afshar V., S.

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
[Crossref]

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization bistability in optical nanowires,” Opt. Lett. 36, 588–590 (2011).
[Crossref] [PubMed]

S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
[Crossref] [PubMed]

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref] [PubMed]

M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated raman scattering,” Opt. Express 17, 11565–11581 (2009).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in “Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,” (OSA2011), paper C370.

S. Afshar V., W. Zhang, and T. M. Monro, “Experimental confirmation of a generalized definition of the effective nonlinear coefficient in emerging waveguides with subwavelength structures,” in “Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference 2009,” (OSA2009), OSA Technical Digest (CD), paper CThBB6.

Almeida, V. R.

Asimakis, S.

Astar, W.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Barrios, C. A.

Belardi, W.

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Boyraz, O.

Bulla, D.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Carter, G. M.

Cassan, E.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Choi, D.-Y.

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Dadap, J. I.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Driscoll, J. B.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Dumont, B.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Feng, X.

Finazzi, V.

Foster, M. A.

Frampton, K.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Furusawa, K.

Gaeta, A. L.

Gai, X.

Green, W. M. J.

Han, T.

Jalali, B.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Koizumi, F.

Koonath, P.

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Koster, A.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Lardenois, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Lau, R. K. W.

Laval, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Lee, J. H.

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Lipson, M.

Liu, X.

Loh, W. H.

Lohe, M. A.

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
[Crossref]

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization bistability in optical nanowires,” Opt. Lett. 36, 588–590 (2011).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in “Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,” (OSA2011), paper C370.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Luther-Davies, B.

Luther-Davis, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Madden, S.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Ménard, M.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Monro, T. M.

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
[Crossref]

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization bistability in optical nanowires,” Opt. Lett. 36, 588–590 (2011).
[Crossref] [PubMed]

M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated raman scattering,” Opt. Express 17, 11565–11581 (2009).
[Crossref] [PubMed]

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref] [PubMed]

S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
[Crossref] [PubMed]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2r-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001).
[Crossref]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in “Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,” (OSA2011), paper C370.

S. Afshar V., W. Zhang, and T. M. Monro, “Experimental confirmation of a generalized definition of the effective nonlinear coefficient in emerging waveguides with subwavelength structures,” in “Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference 2009,” (OSA2009), OSA Technical Digest (CD), paper CThBB6.

Moore, R. C.

Mori, A.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Okawachi, Y.

Osgood,

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Petropoulos, P.

Petrovich, M. N.

Poletti, F.

Ponzo, G. M.

Prasad, A.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Raghunathan, V.

Richardson, D. J.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Salem, R.

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Turner, M. D.

Turner-Foster, A. C.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Vivien, L.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Vlasov, Y. A.

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Wang, R.

Xu, Q.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

Zhang, W.

S. Afshar V., W. Zhang, and T. M. Monro, “Experimental confirmation of a generalized definition of the effective nonlinear coefficient in emerging waveguides with subwavelength structures,” in “Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference 2009,” (OSA2009), OSA Technical Digest (CD), paper CThBB6.

Zhang, W. Q.

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
[Crossref]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization bistability in optical nanowires,” Opt. Lett. 36, 588–590 (2011).
[Crossref] [PubMed]

S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
[Crossref] [PubMed]

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in “Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,” (OSA2011), paper C370.

IEEE Photon. Technol. Lett. (1)

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear self-flipping of polarization states in asymmetric waveguides,” IEEE Photon. Technol. Lett. 24, 1453–1456 (2012).
[Crossref]

J. Appl. Phys. (1)

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys. 107, 43108–43111 (2010).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Opt. Commun. (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[Crossref]

Opt. Express (7)

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
[Crossref] [PubMed]

F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19, 66–80 (2011).
[Crossref] [PubMed]

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref] [PubMed]

M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated raman scattering,” Opt. Express 17, 11565–11581 (2009).
[Crossref] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
[Crossref] [PubMed]

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Other (2)

W. Q. Zhang, M. A. Lohe, T. M. Monro, and S. Afshar V., “Nonlinear polarization self-flipping and optical switching,” in “Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,” (OSA2011), paper C370.

S. Afshar V., W. Zhang, and T. M. Monro, “Experimental confirmation of a generalized definition of the effective nonlinear coefficient in emerging waveguides with subwavelength structures,” in “Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference 2009,” (OSA2009), OSA Technical Digest (CD), paper CThBB6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1: (a) An example of a optical waveguide with reduced symmetry as defined in the Section 1. (b) Schematics of the experiment setup used throughout this paper. WG: waveguide, LP1&LP2: linear polarizers with polarization aligned 45° to the horizon. (c) Output versus input power for the waveguide in (a) and the experimental setup schematic in (b).
Fig. 2:
Fig. 2: Difference in the refractive indices of TE and TM for a range of waveguides at 1550 nm. Black line: the contour where Δneff = 0.
Fig. 3:
Fig. 3: The scalability NSPF in lossy systems. (a), (c): the loss in the two polarizations are set to be the same. (b), (d): the loss in the two polarizations are slightly different.
Fig. 4:
Fig. 4: (a) Analytical prediction of the output versus CW input power of the waveguide in Fig. 1 (a) with L = 4 mm, α = 10 dB/cm and a CW laser. The red dot is a case where the same input power (40 W) are used in (b)–(d). (b)–(d) The input (blue) and output (green) pulse shape with 0%, 7% and 20% of noise.
Fig. 5:
Fig. 5: The influence of noise on the behavior of NSPF with 40 W, 5 ns (T0) super-Gaussian pulses in a 4 mm long waveguide. The red dots represent the ratio at 7% and 20% noise level.
Fig. 6:
Fig. 6: The influence of dispersion on the behavior of NSPF. (b–d): The intersections of the red lines define the threshold of pulse width for each case.

Tables (1)

Tables Icon

Table 1: Comparison of tolerances for different waveguide widths

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

A 1 z + n = 1 i n 1 n ! β 1 ( n ) n A 1 t n = α 1 2 A 1 + i ( γ 1 | A 1 | 2 + γ c | A 2 | 2 ) A 1 + i γ c A 1 * A 2 2 exp ( 2 i z Δ β ) , A 2 z + n = 1 i n 1 n ! β 2 ( n ) n A 2 t n = α 2 2 A 2 + i ( γ 2 | A 2 | 2 + γ c | A 1 | 2 ) A 2 + i γ c A 2 * A 1 2 exp ( 2 i z Δ β ) ,
v ˙ = d v d τ = v ( 1 v ) sin θ , θ ˙ = d θ d τ = a + 2 b v + ( 1 2 v ) cos θ .
a = Δ β P 0 γ c γ c γ 2 γ c , b = γ 1 + γ 2 2 γ c 2 γ c ,
γ c + γ c γ 1 < Δ β P 0 < γ 2 γ c γ c .
W ( nm ) = 1.002 × H ( nm ) + 12.4065 ( nm ) .
B ( W , λ ) = Δ β H L ( W , λ ) = λ ZB H .
Δ H max , B = 1000 B ( λ 0 ) ,
Δ H max , L = 500 L ( λ 0 ) .
P 1 z = 2 P 1 P 2 exp ( z α 2 ) γ c sin θ , P 2 z = 2 P 1 P 2 exp ( z α 1 ) γ c sin θ , ϕ 1 z = exp ( z α 1 ) γ 1 P 1 + exp ( z α 2 ) ( γ c + γ c cos θ ) P 2 , ϕ 2 z = exp ( z α 2 ) γ 2 P 2 + exp ( z α 1 ) ( γ c + γ c cos θ ) P 1 ,
v τ = ( 1 v ) v sin θ , θ τ = a ( τ ) + 2 b v + ( 1 2 v ) cos θ .
τ = 2 P 0 γ c [ 1 exp ( α z ) α ] ,
a ( τ ) = γ 2 γ c γ c 2 Δ β 2 P 0 γ c α τ , b = γ 1 + γ 2 2 γ c 2 γ c .
A 1 ( z = 0 , t ) = A 1 ( z = 0 , t ) exp ( i ϕ 1 ) + ε 1 ( t ) exp ( i ψ 1 ( t ) ) , A 2 ( z = 0 , t ) = A 2 ( z = 0 , t ) exp i ( ϕ 2 ) + ε 2 ( t ) exp ( i ψ 2 ( t ) ) ,
A 1 ( z = 0 , t ) = A 2 ( z = 0 , t ) = P 0 2 exp [ 1 2 ( t t 0 ) 2 m ] ,
A 1 ( ω ) z = α 1 2 A 1 ( ω ) + i β 1 ( ω ) A 1 ( ω ) + i ( γ 1 | A 1 ( ω ) | 2 + γ c | A 2 ( ω ) | 2 ) A 1 ( ω ) + i γ c A 1 * ( ω ) A 2 2 ( ω ) exp ( 2 i z Δ β ) , A 2 ( ω ) z = α 2 2 A 2 ( ω ) + i β 2 ( ω ) A 2 ( ω ) + i ( γ 2 | A 2 ( ω ) | 2 + γ c | A 1 ( ω ) | 2 ) A 2 ( ω ) + i γ c A 2 * ( ω ) A 1 2 ( ω ) exp ( 2 i z Δ β ) ,

Metrics