Abstract

The linear and nonlinear optical properties of TbCa4O(BO3)3 (abbreviated as TbCOB) single crystals were investigated for the first time. The refractive indices of TbCOB at several wavelengths were measured by using the minimum deviation method and the parameters of Sellmeier’s dispersion equation were determined from the experimental data. The complete set of six second-order nonlinear optical (NLO) coefficients of TbCOB single crystals were obtained using the Maker fringe (FM) technique, with the largest d32 being on the order of 1.65 pm/V. Moreover, the phase-matching (PM) configurations of second-order harmonic generation (SHG) in the principal planes were calculated, and the largest effective NLO coefficient is deff = 0.86 pm/V along (22.56°, 180°) PM direction. The SHG conversion efficiency from 1064 nm to 532 nm of 8 mm long crystal samples without AR coating along this direction was achieved 57.1% at 28.2 mW input power, and it has a small walk-off angle of 13.8 mrad. In addition, the comparison and discussion with GdCOB and YCOB were carried out.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropy of nonlinear optical properties in monoclinic crystal TmCa4O(BO3)3

Yanqing Liu, Fapeng Yu, Zhengping Wang, Xinguang Xu, and Xian Zhao
Opt. Mater. Express 4(9) 1787-1793 (2014)

Type-II second-harmonic-generation properties of YCOB and GdCOB single crystals

Yanqing Liu, Hongwei Qi, Qingming Lu, Fapeng Yu, Zhengping Wang, Xinguang Xu, and Xian Zhao
Opt. Express 23(3) 2163-2173 (2015)

Nonlinear optical properties of Ca5(BO3)3F crystal

Ke Xu, Pascal Loiseau, Gerard Aka, Regine Maillard, Alain Maillard, and Takunori Taira
Opt. Express 16(22) 17735-17744 (2008)

References

  • View by:
  • |
  • |
  • |

  1. I. Georgescu, “Lasers: Symphony of lights,” Nat. Phys. 8(9), 639 (2012).
    [Crossref]
  2. J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
    [Crossref]
  3. N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
    [Crossref]
  4. J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
    [Crossref]
  5. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm,” Opt. Express 20(4), 4619–4629 (2012).
    [Crossref] [PubMed]
  6. T. B. Bekker, P. P. Fedorov, and A. E. Kokh, “The Ternary Reciprocal System Na, Ba BO2, F,” Cryst. Growth Des. 12(1), 129–134 (2012).
    [Crossref]
  7. F. Xie, B. Wu, G. You, and C. Chen, “Characterization of LiB3O5 crystal for second-harmonic generation,” Opt. Lett. 16(16), 1237–1239 (1991).
    [Crossref] [PubMed]
  8. S. Fang, H. Liu, L. Huang, and N. Ye, “Growth and optical properties of nonlinear LuAl3(BO3)4 crystals,” Opt. Express 21(14), 16415–16423 (2013).
    [Crossref] [PubMed]
  9. K. Xu, P. Loiseau, G. Aka, R. Maillard, A. Maillard, and T. Taira, “Nonlinear optical properties of Ca5(BO3)3F crystal,” Opt. Express 16(22), 17735–17744 (2008).
    [Crossref] [PubMed]
  10. R. Möckel, C. Reuther, and J. Götze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
    [Crossref]
  11. R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, “Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications,” Prog. Cryst. Growth Charact. Mater. 59(3), 113–132 (2013).
    [Crossref]
  12. G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).
  13. Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
    [Crossref]
  14. G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
    [Crossref]
  15. Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
    [Crossref] [PubMed]
  16. J. J. Adams, C. A. Ebbers, K. I. Schaffers, and S. A. Payne, “Nonlinear optical properties of LaCa4O(BO3)3.,” Opt. Lett. 26(4), 217–219 (2001).
    [Crossref] [PubMed]
  17. J. Adams, C. A. Ebbers, K. I. Schaffers, and S. A. Payne, “Type I frequency doubling at 1064 nm in LaCa4O(BO3)3 (LaCOB), GdCa4O(BO3)3 (GdCOB), and YCa4O(BO3)3 (YCOB),” in Advanced Solid-State Lasers (Optical Society of America, 2001, pp. 615–621).
  18. X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
    [Crossref]
  19. A. B. Ilyukhin and B. F. Dzhurinski, “Crystal structure of binary oxoborates LnCa4O(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2,” Russ. J. Inorg. Chem. 38, 847–850 (1993).
  20. D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
    [Crossref]
  21. D. B. Leviton, T. J. Madison, and P. Petrone Iii, “Simple refractometers for index measurements by minimum-deviation method from far ultraviolet to near infrared,” in Proc. SPIE 3425, Optical Diagnostic Methods for Inorganic Transmissive Materials (San Diego, CA, 1998, pp. 148–159).
  22. V. G. Dimitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Crystals,” in Springer Series in Optical Science(Springer-Verlag, Berlin, Germany, 1991).
  23. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
    [Crossref]
  24. Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
    [Crossref]
  25. X. Zhang, X. Wang, G. Wang, Y. Wu, Y. Zhu, and C. Chen, “Determination of the nonlinear optical coefficients of the LixCs(1-x)B3O5 crystals,” J. Opt. Soc. Am. B 24(11), 2877–2882 (2007).
    [Crossref]
  26. S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
    [Crossref]
  27. M. V. Pack, D. J. Armstrong, A. V. Smith, G. Aka, B. Ferrand, and D. Pelenc, “Measurement of the χ2 tensor of GdCa4O(BO3)3 and YCa4O(BO3)3 crystals,” J. Opt. Soc. Am. B 22(2), 417–425 (2005).
    [Crossref]
  28. Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
    [Crossref]
  29. J. H. Xue, Q. H. Ren, and A. K. Wang, “Calculation of type II phase-matching walk-off angle and interaction length of LBO crystals,” J. Synth. Cryst. 38, 1463–1471 (2009).
  30. J. Q. Yao and D. G. Xu, All Solid State Laser and Nonlinear Optical Frequency Conversion Technology (Science Press, 2007).

2014 (3)

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

2013 (3)

R. Möckel, C. Reuther, and J. Götze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, “Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications,” Prog. Cryst. Growth Charact. Mater. 59(3), 113–132 (2013).
[Crossref]

S. Fang, H. Liu, L. Huang, and N. Ye, “Growth and optical properties of nonlinear LuAl3(BO3)4 crystals,” Opt. Express 21(14), 16415–16423 (2013).
[Crossref] [PubMed]

2012 (3)

C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm,” Opt. Express 20(4), 4619–4629 (2012).
[Crossref] [PubMed]

I. Georgescu, “Lasers: Symphony of lights,” Nat. Phys. 8(9), 639 (2012).
[Crossref]

T. B. Bekker, P. P. Fedorov, and A. E. Kokh, “The Ternary Reciprocal System Na, Ba BO2, F,” Cryst. Growth Des. 12(1), 129–134 (2012).
[Crossref]

2011 (1)

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

2010 (1)

N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
[Crossref]

2009 (1)

J. H. Xue, Q. H. Ren, and A. K. Wang, “Calculation of type II phase-matching walk-off angle and interaction length of LBO crystals,” J. Synth. Cryst. 38, 1463–1471 (2009).

2008 (1)

2007 (1)

2006 (2)

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

2005 (1)

2001 (1)

2000 (1)

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

1999 (1)

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

1998 (1)

J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
[Crossref]

1997 (1)

1996 (1)

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

1993 (1)

A. B. Ilyukhin and B. F. Dzhurinski, “Crystal structure of binary oxoborates LnCa4O(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2,” Russ. J. Inorg. Chem. 38, 847–850 (1993).

1991 (1)

1989 (1)

S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
[Crossref]

Adams, J. J.

Ahmad, I.

Aka, G.

K. Xu, P. Loiseau, G. Aka, R. Maillard, A. Maillard, and T. Taira, “Nonlinear optical properties of Ca5(BO3)3F crystal,” Opt. Express 16(22), 17735–17744 (2008).
[Crossref] [PubMed]

M. V. Pack, D. J. Armstrong, A. V. Smith, G. Aka, B. Ferrand, and D. Pelenc, “Measurement of the χ2 tensor of GdCa4O(BO3)3 and YCa4O(BO3)3 crystals,” J. Opt. Soc. Am. B 22(2), 417–425 (2005).
[Crossref]

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[Crossref]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Arivanandhan, M.

R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, “Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications,” Prog. Cryst. Growth Charact. Mater. 59(3), 113–132 (2013).
[Crossref]

Armstrong, D. J.

Arun Kumar, R.

R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, “Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications,” Prog. Cryst. Growth Charact. Mater. 59(3), 113–132 (2013).
[Crossref]

Augé, F.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Balembois, F.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Baruchel, J.

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

Bekker, T. B.

T. B. Bekker, P. P. Fedorov, and A. E. Kokh, “The Ternary Reciprocal System Na, Ba BO2, F,” Cryst. Growth Des. 12(1), 129–134 (2012).
[Crossref]

Benitez, J. M.

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Bénitez, J. M.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Brun, A.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Capmany, J.

J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
[Crossref]

Chai, B.

Chai, B. H. T.

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

Chen, C.

Colin, P.

Coquelin, P.

Damelet, J. P.

Dou, S. X.

S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
[Crossref]

Dzhurinski, B. F.

A. B. Ilyukhin and B. F. Dzhurinski, “Crystal structure of binary oxoborates LnCa4O(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2,” Russ. J. Inorg. Chem. 38, 847–850 (1993).

Ebbers, C. A.

Fang, S.

Fedorov, P. P.

T. B. Bekker, P. P. Fedorov, and A. E. Kokh, “The Ternary Reciprocal System Na, Ba BO2, F,” Cryst. Growth Des. 12(1), 129–134 (2012).
[Crossref]

Fei, Y.

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Ferrand, B.

Fu, X.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Gao, Z.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

García Solé, J.

J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
[Crossref]

Georges, P.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Georgescu, I.

I. Georgescu, “Lasers: Symphony of lights,” Nat. Phys. 8(9), 639 (2012).
[Crossref]

Godard, J.

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Götze, J.

R. Möckel, C. Reuther, and J. Götze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Hayakawa, Y.

R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, “Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications,” Prog. Cryst. Growth Charact. Mater. 59(3), 113–132 (2013).
[Crossref]

Hong, M.

N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
[Crossref]

Hou, S.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Hu, Q.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Huang, L.

Ibanez, A.

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

Ildefonso, M.

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

Ilyukhin, A. B.

A. B. Ilyukhin and B. F. Dzhurinski, “Crystal structure of binary oxoborates LnCa4O(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2,” Russ. J. Inorg. Chem. 38, 847–850 (1993).

Jacquet, M.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Jaque, D.

J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
[Crossref]

Jia, Z.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Jiang, M. H.

S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
[Crossref]

Jovanovic, I.

Kahn-Harari, A.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[Crossref]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Kaminskii, A. A.

J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
[Crossref]

Karsch, S.

Klingebiel, S.

Kokh, A. E.

T. B. Bekker, P. P. Fedorov, and A. E. Kokh, “The Ternary Reciprocal System Na, Ba BO2, F,” Cryst. Growth Des. 12(1), 129–134 (2012).
[Crossref]

Krausz, F.

Le Nain, N.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

Leroudier, J.

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

Liao, Z. M.

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Liu, H.

Liu, Y.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Loiseau, P.

Long, X.

N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
[Crossref]

Maillard, A.

Maillard, R.

Major, Z.

Möckel, R.

R. Möckel, C. Reuther, and J. Götze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Mougel, F.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[Crossref]

Pack, M. V.

Payne, S. A.

Pelenc, D.

Ren, Q. H.

J. H. Xue, Q. H. Ren, and A. K. Wang, “Calculation of type II phase-matching walk-off angle and interaction length of LBO crystals,” J. Synth. Cryst. 38, 1463–1471 (2009).

Reuther, C.

R. Möckel, C. Reuther, and J. Götze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Salin, F.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[Crossref]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Schaffers, K. I.

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

J. J. Adams, C. A. Ebbers, K. I. Schaffers, and S. A. Payne, “Nonlinear optical properties of LaCa4O(BO3)3.,” Opt. Lett. 26(4), 217–219 (2001).
[Crossref] [PubMed]

Shao, Z. S.

S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
[Crossref]

Shi, E.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

Shi, Y.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

Shu, J.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Skrobol, C.

Smith, A. V.

Taira, T.

Tao, X.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Tao, X. T.

S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
[Crossref]

Thelin, P.

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Trushin, S. A.

Tu, C.

N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
[Crossref]

Tu, X.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

Veesler, S.

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

Vivien, D.

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[Crossref]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Wandt, C.

Wang, A. K.

J. H. Xue, Q. H. Ren, and A. K. Wang, “Calculation of type II phase-matching walk-off angle and interaction length of LBO crystals,” J. Synth. Cryst. 38, 1463–1471 (2009).

Wang, G.

Wang, J.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Wang, X.

Wang, Z.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Wu, B.

Wu, Y.

Xie, F.

Xiong, K.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

Xu, K.

Xu, X.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Xue, J. H.

J. H. Xue, Q. H. Ren, and A. K. Wang, “Calculation of type II phase-matching walk-off angle and interaction length of LBO crystals,” J. Synth. Cryst. 38, 1463–1471 (2009).

Yang, L.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Ye, N.

S. Fang, H. Liu, L. Huang, and N. Ye, “Growth and optical properties of nonlinear LuAl3(BO3)4 crystals,” Opt. Express 21(14), 16415–16423 (2013).
[Crossref] [PubMed]

N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
[Crossref]

Ye, Q.

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

Yin, Y.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

You, G.

Yu, F.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Yuan, D.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Zaccaro, J.

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

Zhang, J.

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Zhang, X.

Zhao, X.

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

Zheng, Y.

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

Zhu, Y.

Appl. Phys. Lett. (2)

J. Capmany, D. Jaque, J. García Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998).
[Crossref]

S. X. Dou, M. H. Jiang, Z. S. Shao, and X. T. Tao, “Maker fringes in biaxial crystals and the nonlinear optical coefficients of thiosemicarbazide cadmium chloride monohydrate,” Appl. Phys. Lett. 54(12), 1101–1103 (1989).
[Crossref]

Cryst. Growth Des. (3)

N. Ye, C. Tu, X. Long, and M. Hong, “Recent Advances in Crystal Growth in China: Laser, Nonlinear Optical, and Ferroelectric Crystals,” Cryst. Growth Des. 10(11), 4672–4681 (2010).
[Crossref]

J. Leroudier, J. Zaccaro, M. Ildefonso, S. Veesler, J. Baruchel, and A. Ibanez, “Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions,” Cryst. Growth Des. 11(6), 2592–2598 (2011).
[Crossref]

T. B. Bekker, P. P. Fedorov, and A. E. Kokh, “The Ternary Reciprocal System Na, Ba BO2, F,” Cryst. Growth Des. 12(1), 129–134 (2012).
[Crossref]

CrystEngComm (2)

Y. Liu, F. Yu, Z. Wang, S. Hou, L. Yang, X. Xu, and X. Zhao, “Bulk growth and nonlinear optical properties of thulium calcium oxyborate single crystals,” CrystEngComm 16(30), 7141–7148 (2014).
[Crossref]

D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hu, and X. Tao, “Bulk growth, structure, and characterization of the new monoclinic TbCa4O(BO3)3 crystal,” CrystEngComm 16(19), 4008–4015 (2014).
[Crossref]

Eur. J. Solid State Inorg. Chem. (1)

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

J. Alloy. Comp. (1)

G. Aka, F. Mougel, F. Augé, A. Kahn-Harari, D. Vivien, J. M. Bénitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloy. Comp. 303–304, 401–408 (2000).
[Crossref]

J. Cryst. Growth (4)

Y. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

R. Möckel, C. Reuther, and J. Götze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

X. Tu, Y. Zheng, K. Xiong, Y. Shi, and E. Shi, “Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal,” J. Cryst. Growth 401, 160–163 (2014).
[Crossref]

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Synth. Cryst. (1)

J. H. Xue, Q. H. Ren, and A. K. Wang, “Calculation of type II phase-matching walk-off angle and interaction length of LBO crystals,” J. Synth. Cryst. 38, 1463–1471 (2009).

Nat. Phys. (1)

I. Georgescu, “Lasers: Symphony of lights,” Nat. Phys. 8(9), 639 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Prog. Cryst. Growth Charact. Mater. (1)

R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, “Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications,” Prog. Cryst. Growth Charact. Mater. 59(3), 113–132 (2013).
[Crossref]

Russ. J. Inorg. Chem. (1)

A. B. Ilyukhin and B. F. Dzhurinski, “Crystal structure of binary oxoborates LnCa4O(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2,” Russ. J. Inorg. Chem. 38, 847–850 (1993).

Other (4)

D. B. Leviton, T. J. Madison, and P. Petrone Iii, “Simple refractometers for index measurements by minimum-deviation method from far ultraviolet to near infrared,” in Proc. SPIE 3425, Optical Diagnostic Methods for Inorganic Transmissive Materials (San Diego, CA, 1998, pp. 148–159).

V. G. Dimitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Crystals,” in Springer Series in Optical Science(Springer-Verlag, Berlin, Germany, 1991).

J. Q. Yao and D. G. Xu, All Solid State Laser and Nonlinear Optical Frequency Conversion Technology (Science Press, 2007).

J. Adams, C. A. Ebbers, K. I. Schaffers, and S. A. Payne, “Type I frequency doubling at 1064 nm in LaCa4O(BO3)3 (LaCOB), GdCa4O(BO3)3 (GdCOB), and YCa4O(BO3)3 (YCOB),” in Advanced Solid-State Lasers (Optical Society of America, 2001, pp. 615–621).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic prisms for the measurements of refractive indices, through which ny can be got from the left sample, meanwhile, nx and nz can be obtained from the right one.

Fig. 2
Fig. 2

Refractive indices dispersion curves for TbCOB crystals. Note that the dot symbols are experimental data, and the curves present the Sellmeier fits.

Fig. 3
Fig. 3

Relative orientation of optical axis (X, Y, Z) with regard to crystallographic axis (a, b, c) for the monoclinic TbCOB single crystals.

Fig. 4
Fig. 4

(a) Orientation of the X-cut TbCOB crystal sample used to measure the Maker fringes of d33: E is the fundamental light and P is the SHG light. (b) Experimental Maker fringe (type-I) of d33 (solid curve) and the envelope curve (dashed curve).

Fig. 5
Fig. 5

Phase-matching angle curves for type-I SHG as a function of the wavelength of fundamental wave in the first octant.

Fig. 6
Fig. 6

The experiment set-up for the SHG conversion from 1064 nm to 532 nm.

Fig. 7
Fig. 7

The SHG conversion efficiency versus the fundamental power along PM directions in principal planes for TbCOB crystals at 1064 nm.

Tables (5)

Tables Icon

Table 1 Sellmeier Equation Coefficients for TbCOB crystals

Tables Icon

Table 2 Comparison of the refractive indices between the experimental and calculated values

Tables Icon

Table 3 The values of six independent NLO coefficients, and the configurations used to carry out the MF experiment (including sample orientation, the direction of the polarization for both fundamental and harmonic waves, and the axis of rotation for their determinations). Note that all the dij have an error of ± 10% of itself

Tables Icon

Table 4 Values and expressions [23,28] of deff in principal planes for TbCOB crystals

Tables Icon

Table 5 List and comparison of the fundamental linear and non-linear optical parameters for TbCOB, GdCOB and YCOB crystals. Note that the data of GdCOB and YCOB are from [27] by Michael V. Pack et al., and the deff @ 1064 nm were calculated by using the values of corresponding PM angle and dij

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n i 2 = A i + B i λ 2 C i D i λ 2 ,(i=x,y,z)
I 2 f(θ)× d ij 2 ×T
d ij(TbCOB) d 33(YCOB) = I 2(TbCOB) I 2(YCOB) × f (θ) (YCOB) f (θ) (TbCOB) × T (YCOB) T (TbCOB) | θ= 0 o
θ=arctan{ n z (2w) n x (2w) [ n x 2 (2w) n y 2 (w) n y 2 (w) n z 2 (2w) ] 1/2 }
φ=arctan{ n x (2w) n y (2w) [ n y 2 (2w) n z 2 (w) n z 2 (w) n x 2 (2w) ] 1/2 }

Metrics