Abstract

A transmissive resonator optic gyro (TROG) based on silica waveguide ring resonator with improved long-term bias stability is reported in this paper. The modeling of a transmissive resonator used in optic gyro is carried out. The polarization dependence of resonator and the influences of phase modulator’s residual intensity modulation on the gyro output are analyzed. The resonator is simulated, designed, fabricated, tested and used to build up a TROG prototype. A bias stability of 0.22°/s over one hour test with an integration time of 10s is successfully demonstrated. No obvious drift has been found from the Allan variance analysis result of a 10000s test data, which means that the TROG prototype has an improved long-term drift characteristic.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique

Hui Mao, Huilian Ma, and Zhonghe Jin
Opt. Express 19(5) 4632-4643 (2011)

Improvement of long-term stability of hollow-core photonic-crystal fiber optic gyro based on single-polarization resonator

Hongchen Jiao, Lishuang Feng, Ning Liu, and Zhaohua Yang
Opt. Express 26(7) 8645-8655 (2018)

Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber

Hongchen Jiao, Lishuang Feng, Kai Wang, Ning Liu, and Zhaohua Yang
Opt. Express 25(22) 27806-27817 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2(3), 370–404 (2010).
    [Crossref]
  2. N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors 1(4), 332–339 (2001).
    [Crossref]
  3. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).
  4. M. Guillén-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, “Ring resonator optical gyroscopes-parameter optimization and robustness analysis,” J. Lightwave Technol. 30(12), 1802–1817 (2012).
    [Crossref]
  5. D. Kalantarov and C. P. Search, “Effect of input–output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes,” J. Opt. Soc. Am. B 30(2), 377–381 (2013).
    [Crossref]
  6. H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25(2), 198–201 (2013).
    [Crossref]
  7. J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
    [Crossref] [PubMed]
  8. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19(5), 4632–4643 (2011).
    [Crossref] [PubMed]
  9. J. Haavisto and G. A. Pajer, “Resonance effects in low-loss ring waveguides,” Opt. Lett. 5(12), 510–512 (1980).
    [Crossref] [PubMed]
  10. R. C. Youngquist, L. F. Stokes, and H. J. Shaw, “Effects of normal mode loss in dielectric waveguide directional couplers and interferometers,” IEEE J. Quantum Electron. 19(12), 1888–1896 (1983).
    [Crossref]
  11. X. Chang, H. Ma, and Z. Jin, “Resonance asymmetry phenomenon in waveguide-type optical ring resonator gyro,” Opt. Commun. 285(6), 1134–1139 (2012).
    [Crossref]
  12. H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
    [Crossref] [PubMed]
  13. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  14. J. Haavisto, “Thin-film waveguides for inertial sensors,” Proc. SPIE 0412, 221–228 (1983).
    [Crossref]
  15. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
    [Crossref] [PubMed]
  16. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
    [Crossref]
  17. T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).
  18. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref] [PubMed]
  19. J. Wang, L. Feng, and Y. Zhi, “Analysis of optimal frequency bias of frequency-lock in passive ring resonator optic gyro,” Proc. SPIE 9141, 91411A (2014).
  20. H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguide ring resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
    [Crossref]
  21. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  22. M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
    [Crossref]

2014 (1)

J. Wang, L. Feng, and Y. Zhi, “Analysis of optimal frequency bias of frequency-lock in passive ring resonator optic gyro,” Proc. SPIE 9141, 91411A (2014).

2013 (5)

2012 (4)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

M. Guillén-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, “Ring resonator optical gyroscopes-parameter optimization and robustness analysis,” J. Lightwave Technol. 30(12), 1802–1817 (2012).
[Crossref]

X. Chang, H. Ma, and Z. Jin, “Resonance asymmetry phenomenon in waveguide-type optical ring resonator gyro,” Opt. Commun. 285(6), 1134–1139 (2012).
[Crossref]

H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2008 (1)

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguide ring resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

2007 (1)

2001 (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors 1(4), 332–339 (2001).
[Crossref]

1994 (1)

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

1983 (2)

J. Haavisto, “Thin-film waveguides for inertial sensors,” Proc. SPIE 0412, 221–228 (1983).
[Crossref]

R. C. Youngquist, L. F. Stokes, and H. J. Shaw, “Effects of normal mode loss in dielectric waveguide directional couplers and interferometers,” IEEE J. Quantum Electron. 19(12), 1888–1896 (1983).
[Crossref]

1980 (1)

Adar, R.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

Armenise, M. N.

Barbour, N.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors 1(4), 332–339 (2001).
[Crossref]

Barton, J. S.

Bauters, J. F.

Blumenthal, D. J.

Bowers, J. E.

Bruinink, C. M.

Campanella, C. E.

Chang, X.

X. Chang, H. Ma, and Z. Jin, “Resonance asymmetry phenomenon in waveguide-type optical ring resonator gyro,” Opt. Commun. 285(6), 1134–1139 (2012).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Chen, Z.

Chrostowski, L.

Ciminelli, C.

Cretu, E.

Dell’Olio, F.

Feng, L.

J. Wang, L. Feng, and Y. Zhi, “Analysis of optimal frequency bias of frequency-lock in passive ring resonator optic gyro,” Proc. SPIE 9141, 91411A (2014).

M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
[Crossref]

J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
[Crossref] [PubMed]

Guillén-Torres, M.

Haavisto, J.

J. Haavisto, “Thin-film waveguides for inertial sensors,” Proc. SPIE 0412, 221–228 (1983).
[Crossref]

J. Haavisto and G. A. Pajer, “Resonance effects in low-loss ring waveguides,” Opt. Lett. 5(12), 510–512 (1980).
[Crossref] [PubMed]

Heck, M. J. R.

Heideman, R. G.

Hibino, Y.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Hida, Y.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Itoh, M.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Jaeger, N. A. F.

Jin, Z.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25(2), 198–201 (2013).
[Crossref]

X. Chang, H. Ma, and Z. Jin, “Resonance asymmetry phenomenon in waveguide-type optical ring resonator gyro,” Opt. Commun. 285(6), 1134–1139 (2012).
[Crossref]

H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
[Crossref] [PubMed]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19(5), 4632–4643 (2011).
[Crossref] [PubMed]

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguide ring resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

John, D. D.

Kalantarov, D.

Khan, M. H.

Kitoh, T.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Kominato, T.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Lei, M.

M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
[Crossref]

J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
[Crossref] [PubMed]

Leinse, A.

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Liu, H.

M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
[Crossref]

J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
[Crossref] [PubMed]

Ma, H.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25(2), 198–201 (2013).
[Crossref]

X. Chang, H. Ma, and Z. Jin, “Resonance asymmetry phenomenon in waveguide-type optical ring resonator gyro,” Opt. Commun. 285(6), 1134–1139 (2012).
[Crossref]

H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
[Crossref] [PubMed]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19(5), 4632–4643 (2011).
[Crossref] [PubMed]

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguide ring resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

Mao, H.

Mizrahi, V.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Pajer, G. A.

Passenberg, W.

Qi, M.

Ren, Y.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25(2), 198–201 (2013).
[Crossref]

Schmidt, G.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors 1(4), 332–339 (2001).
[Crossref]

Search, C. P.

Serbin, M. R.

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

Shaw, H. J.

R. C. Youngquist, L. F. Stokes, and H. J. Shaw, “Effects of normal mode loss in dielectric waveguide directional couplers and interferometers,” IEEE J. Quantum Electron. 19(12), 1888–1896 (1983).
[Crossref]

Shen, H.

Soares, F. M.

Sohma, S.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Stokes, L. F.

R. C. Youngquist, L. F. Stokes, and H. J. Shaw, “Effects of normal mode loss in dielectric waveguide directional couplers and interferometers,” IEEE J. Quantum Electron. 19(12), 1888–1896 (1983).
[Crossref]

Takahashi, H.

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Wang, J.

J. Wang, L. Feng, and Y. Zhi, “Analysis of optimal frequency bias of frequency-lock in passive ring resonator optic gyro,” Proc. SPIE 9141, 91411A (2014).

J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
[Crossref] [PubMed]

Wang, S.

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguide ring resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

Wang, W.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25(2), 198–201 (2013).
[Crossref]

J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
[Crossref] [PubMed]

Xiao, S.

Yang, Z.

Youngquist, R. C.

R. C. Youngquist, L. F. Stokes, and H. J. Shaw, “Effects of normal mode loss in dielectric waveguide directional couplers and interferometers,” IEEE J. Quantum Electron. 19(12), 1888–1896 (1983).
[Crossref]

Yu, X.

Zhi, Y.

J. Wang, L. Feng, and Y. Zhi, “Analysis of optimal frequency bias of frequency-lock in passive ring resonator optic gyro,” Proc. SPIE 9141, 91411A (2014).

M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
[Crossref]

J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. C. Youngquist, L. F. Stokes, and H. J. Shaw, “Effects of normal mode loss in dielectric waveguide directional couplers and interferometers,” IEEE J. Quantum Electron. 19(12), 1888–1896 (1983).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25(2), 198–201 (2013).
[Crossref]

IEEE Sensors (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors 1(4), 332–339 (2001).
[Crossref]

J. Lightwave Technol. (2)

R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

M. Guillén-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, “Ring resonator optical gyroscopes-parameter optimization and robustness analysis,” J. Lightwave Technol. 30(12), 1802–1817 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

X. Chang, H. Ma, and Z. Jin, “Resonance asymmetry phenomenon in waveguide-type optical ring resonator gyro,” Opt. Commun. 285(6), 1134–1139 (2012).
[Crossref]

H. Ma, S. Wang, and Z. Jin, “Measurements of excess loss of the crossed waveguide using optical waveguide ring resonators,” Opt. Commun. 281(24), 6016–6018 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optik (1)

M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
[Crossref]

Proc. SPIE (2)

J. Haavisto, “Thin-film waveguides for inertial sensors,” Proc. SPIE 0412, 221–228 (1983).
[Crossref]

J. Wang, L. Feng, and Y. Zhi, “Analysis of optimal frequency bias of frequency-lock in passive ring resonator optic gyro,” Proc. SPIE 9141, 91411A (2014).

Other (2)

T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (Stockholm, Sweden, 2004).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch map of the transmissive resonator optic gyro based on silica-on-silicon waveguide.
Fig. 2
Fig. 2 Relation between the sensitivity limit and the ESA according to Eq. (4). The parameters are as follows: c = 3 × 108m/s, λ = 1.55 × 10−6m, Rf = 40KΩ, VPP = 2V, t = 10s, e = 1.6 × 10−19C.
Fig. 3
Fig. 3 Contour map of PER of transmissive resonator.
Fig. 4
Fig. 4 Relation between the bend radius r and the corresponding ESA value (N = 1). a) simulation structure and the relation between r and the area; b) total loss of a round-trip of the WRR; c) finesse of the WRR if k = 0.01; d) ESA. The max ESA point is left-shift with the unit propagation loss increasing, but the ESA remains at a high level when the structure is more circle-like.
Fig. 5
Fig. 5 Relation among coupling ratio, finesse and transmittance of a transmissive WRR with a diameter of 35mm. We suppose that the two couplers are the same, and the extra loss of the coupler is fixed at 0.013dB.
Fig. 6
Fig. 6 Transfer function tests of the WRR. a) fiber-coupled transmissive WRR (the red dash line outlines the ring resonator); b) output and fit of the reflection port; c) output and fit of the transmission port. The data is obtained by sweeping the central frequency of a tunable narrow linewidth laser via PZT tuning.
Fig. 7
Fig. 7 Curve fitting of the PD signal. The TE peak is saturated, while the TM peak is almost submerged in noise. The TM peak value can be obtained more precisely after proper smoothing.
Fig. 8
Fig. 8 Test results of the TROG prototype. a) scale factor test based on equivalent input; b) 1h static test ; c) allan variance of the rotation rate data of a 10000s test, from which it can be seen that there is no obvious long-term drift.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H(f)= 1 (1q) 2 +2q[1cos(2π f FSR +φ)]
q= (1 k 1 )(1 k 2 ) (1 α 1 )(1 α 2 ) (1 α L/2 )
F= π cos 1 ( 2q 1+ q 2 )
ER= I max I min = ( 1+q 1q ) 2 = ( cos π F +1sin π F cos π F 1+sin π F ) 2 ( 2F π 1) 2
δΩ= cλ 6FAN e t I max
f TE =mFS R TE
H TM ( f TE )= 1 (1q) 2 +2q[1cos(2mπ FS R TE FS R TM )]
PER= H TE ( f TE ) H TM ( f TE ) =1+ 2q (1q) 2 [1cos(2mπ n TM n TE )]1+ 2q (1q) 2 (1cos φ TE/TM )
PE R max =1+ 4q (1q) 2 = ( 1+q 1q ) 2 =ER
S= K max 4A nλL π 180 (°/s) 1 =6 3 FAN cλ π 180 (°/s) 1
H(f)= ( Δf /2 δf ) 2 1+ ( Δf /2 δf ) 2
D(δf)=H(δf+ f b )H(δf f b )
K= D δf | δf=0 = Δ f 2 f b ( f b 2 + (Δf /2 ) 2 ) 2
f b =f( dK d f b =0)= 3 6 Δf
K max =K( f b )= 3 3 2Δf
H(δf= 3 6 Δf)= 3 4
δf= 2 KSNR
SNR= I max 2e I bias /t = 1 2e t I max I bias I max = 1 2e t I max H( f bias )
δf= e t I max 2 3 Δf
δΩ= nλL 4A δf= cλ 6FAN e t I max

Metrics