Abstract

A temperature compensated magnetic field strength optical fiber sensor has been proposed and experimentally demonstrated. A fiber Bragg grating (FBG) is cascaded to modal interferometer (MI), which is fabricated by dual S-bend splicing between thin fiber (TF) and single mode fiber (SMF) with intentionally controlled misalignment between cores. We established a modified numerical model to describe the multi-mode interference of this exceptional S-bend and misalignment structure, together with the simulation based on beam propagation method to gain insight into its operation mechanism. The FBG is used to interrogate the temperature change, and then compensate the perturbation of temperature on transmission of the MI. Thanks to the proposed dual S-bend structure and the diameter-thinned TF used here; we have obtained high magnetic sensitivity of −0.0678 dB/Oe using only 4 mm TF after the elimination of ambient temperature change.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-compensated magnetic field sensing with a dual-ring structure consisting of microfiber coupler-Sagnac loop and fiber Bragg grating-assisted resonant cavity

Fangfang Wei, Dejun Liu, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, Gang-Ding Peng, and Yuliya Semenova
Appl. Opt. 58(9) 2334-2339 (2019)

Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing

Shaohua Dong, Shengli Pu, and Haotian Wang
Opt. Express 22(16) 19108-19116 (2014)

Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber

Ji Wang, Li Pei, Jianshuai Wang, Zuliang Ruan, Jingjing Zheng, Jing Li, and Tigang Ning
Opt. Express 28(2) 1456-1471 (2020)

References

  • View by:
  • |
  • |
  • |

  1. Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
    [Crossref]
  2. P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36(8), 1425–1427 (2011).
    [Crossref] [PubMed]
  3. P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37(3), 398–400 (2012).
    [Crossref] [PubMed]
  4. H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30(5), 543–545 (2005).
    [Crossref] [PubMed]
  5. L. X. Chen, X. G. Huang, J. H. Zhu, G. C. Li, and S. Lan, “Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection,” Opt. Lett. 36(15), 2761–2763 (2011).
    [PubMed]
  6. S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
    [Crossref]
  7. H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
    [Crossref]
  8. W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
    [Crossref]
  9. R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
    [Crossref]
  10. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
    [Crossref]
  11. M. Deng, X. Sun, M. Han, and D. Li, “Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid,” Appl. Opt. 52(4), 734–741 (2013).
    [Crossref] [PubMed]
  12. J. Zheng, X. Dong, P. Zu, L. Y. Shao, C. C. Chan, Y. Cui, and P. P. Shum, “Magnetic field sensor using tilted fiber grating interacting with magnetic fluid,” Opt. Express 21(15), 17863–17868 (2013).
    [PubMed]
  13. J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
    [Crossref]
  14. H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
    [Crossref]
  15. R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Opt. Lett. 38(9), 1539–1541 (2013).
    [Crossref] [PubMed]
  16. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
    [Crossref] [PubMed]
  17. J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
    [Crossref]
  18. H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
    [Crossref]
  19. Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
    [Crossref]
  20. Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
    [Crossref]
  21. J. Chen, J. Zhou, and X. Yuan, “Mach-Zehnder interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photon. Technol. Lett. 26(8), 837–840 (2014).
    [Crossref]
  22. L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  23. A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode–multimode–singlemode fiber-based edge filter,” J. Lightwave Technol. 27(13), 2482–2488 (2009).
    [Crossref]
  24. W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
    [Crossref]
  25. V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
    [Crossref]
  26. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
    [Crossref]

2014 (4)

R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

J. Chen, J. Zhou, and X. Yuan, “Mach-Zehnder interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photon. Technol. Lett. 26(8), 837–840 (2014).
[Crossref]

2013 (8)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Opt. Lett. 38(9), 1539–1541 (2013).
[Crossref] [PubMed]

H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
[Crossref] [PubMed]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

M. Deng, X. Sun, M. Han, and D. Li, “Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid,” Appl. Opt. 52(4), 734–741 (2013).
[Crossref] [PubMed]

J. Zheng, X. Dong, P. Zu, L. Y. Shao, C. C. Chan, Y. Cui, and P. P. Shum, “Magnetic field sensor using tilted fiber grating interacting with magnetic fluid,” Opt. Express 21(15), 17863–17868 (2013).
[PubMed]

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

2012 (1)

2011 (4)

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36(8), 1425–1427 (2011).
[Crossref] [PubMed]

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

L. X. Chen, X. G. Huang, J. H. Zhu, G. C. Li, and S. Lan, “Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection,” Opt. Lett. 36(15), 2761–2763 (2011).
[PubMed]

2009 (1)

2006 (1)

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

2005 (2)

H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30(5), 543–545 (2005).
[Crossref] [PubMed]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

2004 (1)

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

2003 (1)

H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
[Crossref]

1997 (1)

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

1995 (1)

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1978 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Abdelaziz, S.

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Boyd, J. T.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Chan, C. C.

Chao, Y. H.

Chen, C. S.

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

Chen, J.

J. Chen, J. Zhou, and X. Yuan, “Mach-Zehnder interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photon. Technol. Lett. 26(8), 837–840 (2014).
[Crossref]

Chen, L.

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36(8), 1425–1427 (2011).
[Crossref] [PubMed]

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

Chen, L. H.

Chen, L. X.

Chen, X.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

Chen, Y.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

Cheng, Y.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Chieh, J. J.

H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30(5), 543–545 (2005).
[Crossref] [PubMed]

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

Cui, Y.

De Brabander, G. N.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Deng, M.

Dong, S.

Dong, X.

Fang, K. L.

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

Farrell, G.

Fen, L. H.

Fu, S.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Gao, R.

Gupta, S.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

Han, M.

Hatta, A. M.

Hong, C.

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
[Crossref]

Hong, C. Y.

Horng, H. E.

H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30(5), 543–545 (2005).
[Crossref] [PubMed]

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
[Crossref]

Huang, J.

Huang, X. G.

Ji, J.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Jiang, Y.

Jin, Y.

Kale, S. N.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

Kitture, R.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

Lan, S.

Lew, W. S.

Li, D.

Li, G. C.

Li, Q.

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

Liao, W.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

Liew, H. F.

Lin, W.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Liu, B.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

Liu, D.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Liu, S.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Liu, Y.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

Lv, R.

R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Miao, Y.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

Naghski, D. H.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Nalawade, S. M.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

Pennings, E. C.

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Pu, S.

H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
[Crossref] [PubMed]

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Rajan, G.

Semenova, Y.

Shao, L. Y.

Shum, P. P.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

J. Zheng, X. Dong, P. Zu, L. Y. Shao, C. C. Chan, Y. Cui, and P. P. Shum, “Magnetic field sensor using tilted fiber grating interacting with magnetic fluid,” Opt. Express 21(15), 17863–17868 (2013).
[PubMed]

Siang, L. W.

Soldano, L. B.

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Song, B.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Su, H.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Subramaniam, V.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Sun, X.

Tang, M.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Thakur, H. V.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

Tong, W.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Wang, D.

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Wang, H.

Wang, N.

Wang, P.

Wang, Q.

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Wei, H.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Wong, W. C.

Wu, J.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

Xia, Y.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

Xu, Y.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

Yang, H. C.

H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30(5), 543–545 (2005).
[Crossref] [PubMed]

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
[Crossref]

Yang, S. Y.

H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30(5), 543–545 (2005).
[Crossref] [PubMed]

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
[Crossref]

Yao, J.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

Yuan, X.

J. Chen, J. Zhou, and X. Yuan, “Mach-Zehnder interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photon. Technol. Lett. 26(8), 837–840 (2014).
[Crossref]

Zhang, H.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

Zhang, K.

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

Zhang, Y.

Zhao, Y.

R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Zhao, Z.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Zheng, J.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

J. Zheng, X. Dong, P. Zu, L. Y. Shao, C. C. Chan, Y. Cui, and P. P. Shum, “Magnetic field sensor using tilted fiber grating interacting with magnetic fluid,” Opt. Express 21(15), 17863–17868 (2013).
[PubMed]

Zhou, J.

J. Chen, J. Zhou, and X. Yuan, “Mach-Zehnder interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photon. Technol. Lett. 26(8), 837–840 (2014).
[Crossref]

Zhu, J. H.

Zu, P.

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Appl. Phys. Lett. (7)

H. E. Horng, C. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
[Crossref]

Y. Miao, B. Liu, K. Zhang, Y. Liu, and H. Zhang, “Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid,” Appl. Phys. Lett. 98(2), 021103 (2011).
[Crossref]

H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85(23), 5592–5594 (2004).
[Crossref]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87(15), 151122 (2005).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett. 99(16), 161101 (2011).
[Crossref]

Electron. Lett. (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Chen, J. Zhou, and X. Yuan, “Mach-Zehnder interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photon. Technol. Lett. 26(8), 837–840 (2014).
[Crossref]

J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photon. Technol. Lett. 26(15), 1581–1584 (2014).
[Crossref]

R. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Perot sensor for magnetic field measurement,” IEEE Photon. Technol. Lett. 26(3), 217–219 (2014).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber Optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

J. Appl. Phys. (1)

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys. 99(9), 093516 (2006).
[Crossref]

J. Lightwave Technol. (3)

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

A. M. Hatta, G. Farrell, P. Wang, G. Rajan, and Y. Semenova, “Misalignment limits for a singlemode–multimode–singlemode fiber-based edge filter,” J. Lightwave Technol. 27(13), 2482–2488 (2009).
[Crossref]

Laser Photon. Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration diagrams of the fabrication procedure of the S-bend structure. (a) and (b) are performed in fusion splicer, and (c) is in the fiber cleaver.
Fig. 2
Fig. 2 (a) Schematic diagram of the dual S-bend fiber modal interferometer. Inset: optical microscope image of the S-bend splicing region and the electromagnets used for provide accurate magnetic field strength; (b) junction of the S-bend structure.
Fig. 3
Fig. 3 (a) Simulated electric field intensity distribution with 10 um off-axis displacement at both ends shown in X-Z plane. (b) Transmission loss in the output fiber core dependent on the off-axis displacement between TF and SMF calculated from beam propagation method. (c) The transmission spectrum of the fiber Bragg grating.
Fig. 4
Fig. 4 (a) Transmission spectra of the modal interferometer with being exposed to air and being immersed into MF; (b) the corresponding FFT-spatial frequency spectrum.
Fig. 5
Fig. 5 (a) Measured transmission spectrums under different magnetic field strengths from 0 Oe to 230 Oe; (b) magnetic response of the MI at two specific wavelengths (1526.72 nm and 1563.72 nm, respectively).
Fig. 6
Fig. 6 (a) Measured transmission spectrums with different temperature; (b) enlarged view of spectrums in the range of FBG transmission dip; (c) temperature response of the MI at two specific wavelengths (1526.72 nm and 1563.72 nm, respectively); (d) temperature dependence of wavelength shift of the FBG.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E(r,z)=E(r,0)[1+ ( κ 0 n c w 0 ) 2 r/R]
E( r, z 0 )= m=1 M c m ψ m ( r )
c m = - + E (r,z 0 ) ψ m ( r )rdr - + ψ m ( r ) ψ m ( r )rdr
E TF (r,z)= m=1 M c m ψ m ( r )exp(j β m z)
T S-bend =10 log 10 ( | - + E 1 (r,z)E 2 * (a-r,z)dr | 2 - + E 1 (r,z)E 1 * (r,z)dr - + E 2 (r,z)E 2 * (r,z)dr )
Δ λ TFBG = α TFBG Δ K TEM
Δ T MI = η TEM Δ K TEM + η H ΔH
Δ λ TFBG =0.0101Δ K TEM Δ T MI =0.04Δ K TEM 0.0678ΔH

Metrics