Abstract

We perform theoretical studies on the plasmonic enhancement for the Forster resonance energy transfer (FRET) between a donor and an acceptor molecule in the vicinity of a metallic particle or cavity, with focus on the possible role of the addition of a clad layer of gain material can play in such a process. The results show that while the plasmonic resonances can be shifted with higher order plasmonic enhancements emerged in the presence of such a layer of gain material, optimal enhancement of the FRET rate can be achieved when gain just balances with the loss in the metal. This then leads to the existence of an optimal thickness for the gain material layer, for both particle and cavity enhancement. In addition, it is observed that the FRET efficiency can always be increased with the coating of the gain material even at the dipole plasmonic resonance when nonradiative transfer from the donor to the metal is high, provided that the gain level is not beyond a certain critical value.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fundamental figures of merit for engineering Förster resonance energy transfer

Cristian L. Cortes and Zubin Jacob
Opt. Express 26(15) 19371-19387 (2018)

Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects

Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang
Opt. Express 18(7) 6516-6521 (2010)

Investigating the distance limit of a metal nanoparticle based spectroscopic ruler

Subhasish Chatterjee, Jong Bum Lee, Nikesh V. Valappil, Dan Luo, and Vinod M. Menon
Biomed. Opt. Express 2(6) 1727-1733 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Forster, “Intermolecular energy migration and fluorescence (in German),” Ann. Phys. 437, 55–75 (1948).
  2. T. Forster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27, 7–17 (1959).
    [Crossref]
  3. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  4. For a comprehensive review, see the recent text by: I. L. Medintz and N. Hildebrandt, FRET - Förster Resonance Energy Transfer: From Theory to Applications (John Wiley, 2013).
  5. J. I. Gersten, “Fluorescence resonance energy transfer near thin films on surfaces,” Plasmonics 2(2), 65–77 (2007).
    [Crossref]
  6. J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
    [Crossref]
  7. X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
    [Crossref]
  8. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
    [Crossref] [PubMed]
  9. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice,” Plasmonics 5(4), 363–368 (2010).
    [Crossref]
  10. X. M. Hua and J. I. Gersten, “Enhanced energy transfer between donor and acceptor molecules near a long wire or fiber,” J. Chem. Phys. 91(2), 1279–1286 (1989).
    [Crossref]
  11. Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
    [Crossref] [PubMed]
  12. H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
    [Crossref]
  13. M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
    [Crossref] [PubMed]
  14. S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
    [Crossref] [PubMed]
  15. J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
    [Crossref] [PubMed]
  16. G. A. Plotz, H. J. Simon, and J. M. Tucciarone, “Enhanced total reflection with surface plasmons,” J. Opt. Soc. Am. 69(3), 419–422 (1979).
    [Crossref]
  17. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media (Cambridge, 2011).
  18. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [Crossref] [PubMed]
  19. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
    [Crossref] [PubMed]
  20. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  21. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  22. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  23. J. H. Huang and R. Chang, “Theoretical investigation on the strong coupling between a molecule and a metallic nanosphere clad with a gain medium,” J. Opt. 16(1), 015005 (2014).
    [Crossref]
  24. S. Biehs and G. S. Agarwal, “Large enhancement of Forster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
    [Crossref]
  25. V. Karanikolas, C. A. Marocico, and A. L. Bradley, “Spontaneous emission and energy transfer rates near a coated metallic cylinder,” Phys. Rev. A 89(6), 063817 (2014).
    [Crossref]
  26. V. N. Pustovit and T. V. Shahbazyan, “Resonance energy transfer near metal nanostructures mediated by surface plasmons,” Phys. Rev. B 83(8), 085427 (2011).
    [Crossref]
  27. See, e.g. Refs. [15] and [25] for models of such distributions.
  28. F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
    [Crossref] [PubMed]
  29. M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
    [Crossref]
  30. W. L. Barnes and P. Andrew, “Energy transfer under control,” Nature 400(6744), 505–506 (1999).
    [Crossref]
  31. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
    [Crossref] [PubMed]
  32. D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
    [Crossref]
  33. D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
    [Crossref]
  34. H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” ChemPhysChem 6(11), 2410–2416 (2005).
    [Crossref] [PubMed]
  35. A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
    [Crossref] [PubMed]
  36. A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B 85(11), 115429 (2012).
    [Crossref]
  37. Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
    [Crossref] [PubMed]

2014 (5)

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

J. H. Huang and R. Chang, “Theoretical investigation on the strong coupling between a molecule and a metallic nanosphere clad with a gain medium,” J. Opt. 16(1), 015005 (2014).
[Crossref]

V. Karanikolas, C. A. Marocico, and A. L. Bradley, “Spontaneous emission and energy transfer rates near a coated metallic cylinder,” Phys. Rev. A 89(6), 063817 (2014).
[Crossref]

F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
[Crossref] [PubMed]

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

2013 (3)

S. Biehs and G. S. Agarwal, “Large enhancement of Forster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

2012 (2)

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B 85(11), 115429 (2012).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

2011 (1)

V. N. Pustovit and T. V. Shahbazyan, “Resonance energy transfer near metal nanostructures mediated by surface plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

2010 (1)

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice,” Plasmonics 5(4), 363–368 (2010).
[Crossref]

2009 (4)

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[Crossref]

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (1)

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

2007 (1)

J. I. Gersten, “Fluorescence resonance energy transfer near thin films on surfaces,” Plasmonics 2(2), 65–77 (2007).
[Crossref]

2006 (1)

2005 (1)

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” ChemPhysChem 6(11), 2410–2416 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

2002 (1)

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
[Crossref]

2000 (2)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
[Crossref]

1999 (2)

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

W. L. Barnes and P. Andrew, “Energy transfer under control,” Nature 400(6744), 505–506 (1999).
[Crossref]

1989 (1)

X. M. Hua and J. I. Gersten, “Enhanced energy transfer between donor and acceptor molecules near a long wire or fiber,” J. Chem. Phys. 91(2), 1279–1286 (1989).
[Crossref]

1985 (1)

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[Crossref]

1984 (1)

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[Crossref]

1979 (1)

1959 (1)

T. Forster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27, 7–17 (1959).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1948 (1)

T. Forster, “Intermolecular energy migration and fluorescence (in German),” Ann. Phys. 437, 55–75 (1948).

Adegoke, J.

Agarwal, G. S.

S. Biehs and G. S. Agarwal, “Large enhancement of Forster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

Agranovich, V. M.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
[Crossref]

D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

W. L. Barnes and P. Andrew, “Energy transfer under control,” Nature 400(6744), 505–506 (1999).
[Crossref]

Aradian, A.

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B 85(11), 115429 (2012).
[Crossref]

Bahoura, M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

W. L. Barnes and P. Andrew, “Energy transfer under control,” Nature 400(6744), 505–506 (1999).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Basko, D. M.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
[Crossref]

D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
[Crossref]

Bassani, F.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
[Crossref]

D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Biehs, S.

S. Biehs and G. S. Agarwal, “Large enhancement of Forster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

Boudreau, D.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Bradley, A. L.

V. Karanikolas, C. A. Marocico, and A. L. Bradley, “Spontaneous emission and energy transfer rates near a coated metallic cylinder,” Phys. Rev. A 89(6), 063817 (2014).
[Crossref]

Brecht, M.

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Chang, R.

J. H. Huang and R. Chang, “Theoretical investigation on the strong coupling between a molecule and a metallic nanosphere clad with a gain medium,” J. Opt. 16(1), 015005 (2014).
[Crossref]

Cheng, B. H.

Chung, H. Y.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice,” Plasmonics 5(4), 363–368 (2010).
[Crossref]

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Deussen, M.

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Drachev, V. P.

Fainman, Y.

Forster, T.

T. Forster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27, 7–17 (1959).
[Crossref]

T. Forster, “Intermolecular energy migration and fluorescence (in German),” Ann. Phys. 437, 55–75 (1948).

Fujiwara, H.

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” ChemPhysChem 6(11), 2410–2416 (2005).
[Crossref] [PubMed]

Gersten, J. I.

J. I. Gersten, “Fluorescence resonance energy transfer near thin films on surfaces,” Plasmonics 2(2), 65–77 (2007).
[Crossref]

X. M. Hua and J. I. Gersten, “Enhanced energy transfer between donor and acceptor molecules near a long wire or fiber,” J. Chem. Phys. 91(2), 1279–1286 (1989).
[Crossref]

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[Crossref]

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gobel, E. O.

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

Gonzaga-Galeana, J. A.

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

Guss, W.

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ho, Y. Z.

Hohenester, U.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Hopmeier, M.

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

Hua, X. M.

X. M. Hua and J. I. Gersten, “Enhanced energy transfer between donor and acceptor molecules near a long wire or fiber,” J. Chem. Phys. 91(2), 1279–1286 (1989).
[Crossref]

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[Crossref]

Huang, J. H.

J. H. Huang and R. Chang, “Theoretical investigation on the strong coupling between a molecule and a metallic nanosphere clad with a gain medium,” J. Opt. 16(1), 015005 (2014).
[Crossref]

Hussels, M.

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Jin, C. J.

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Karanikolas, V.

V. Karanikolas, C. A. Marocico, and A. L. Bradley, “Spontaneous emission and energy transfer rates near a coated metallic cylinder,” Phys. Rev. A 89(6), 063817 (2014).
[Crossref]

Karapetyan, N. V.

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Kern, A. M.

F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
[Crossref] [PubMed]

Kim, D.

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Kim, D. H.

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Kochuveedu, S. T.

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Konrad, A.

F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
[Crossref] [PubMed]

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Krenn, J. R.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

La Rocca, G. C.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
[Crossref]

D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
[Crossref]

Lan, Y. C.

Lee, M.

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Lee, Y.

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Leitner, A.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Lessard-Viger, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Leung, P. T.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice,” Plasmonics 5(4), 363–368 (2010).
[Crossref]

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[Crossref]

Liu, J. M.

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Luan, P. G.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Mahrt, R. F.

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

Marocico, C. A.

V. Karanikolas, C. A. Marocico, and A. L. Bradley, “Spontaneous emission and energy transfer rates near a coated metallic cylinder,” Phys. Rev. A 89(6), 063817 (2014).
[Crossref]

Masuhara, H.

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” ChemPhysChem 6(11), 2410–2416 (2005).
[Crossref] [PubMed]

Meixner, A. J.

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nezhad, M. P.

Nitzan, A.

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[Crossref]

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Plotz, G. A.

Pustovit, V. N.

V. N. Pustovit and T. V. Shahbazyan, “Resonance energy transfer near metal nanostructures mediated by surface plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

Rainville, L.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Reil, F.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Rioux, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Ritzo, B. A.

Sasaki, K.

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” ChemPhysChem 6(11), 2410–2416 (2005).
[Crossref] [PubMed]

Schleifenbaum, F.

F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
[Crossref] [PubMed]

Shahbazyan, T. V.

V. N. Pustovit and T. V. Shahbazyan, “Resonance energy transfer near metal nanostructures mediated by surface plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Simon, H. J.

Skandary, S.

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Small, C. E.

Son, T.

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Tetz, K.

Trost, A. L.

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Tsai, D. P.

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice,” Plasmonics 5(4), 363–368 (2010).
[Crossref]

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[Crossref]

Tucciarone, J. M.

Veltri, A.

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B 85(11), 115429 (2012).
[Crossref]

Wang, X. H.

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Wang, Y. T.

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Xie, H. Y.

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[Crossref]

Yu, Y. C.

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Zurita-Sánchez, J. R.

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

Ann. Phys. (1)

T. Forster, “Intermolecular energy migration and fluorescence (in German),” Ann. Phys. 437, 55–75 (1948).

Appl. Phys. Lett. (1)

S. Biehs and G. S. Agarwal, “Large enhancement of Forster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

Chem. Phys. Lett. (1)

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[Crossref]

ChemPhysChem (1)

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” ChemPhysChem 6(11), 2410–2416 (2005).
[Crossref] [PubMed]

Discuss. Faraday Soc. (1)

T. Forster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27, 7–17 (1959).
[Crossref]

J. Chem. Phys. (4)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[Crossref]

X. M. Hua and J. I. Gersten, “Enhanced energy transfer between donor and acceptor molecules near a long wire or fiber,” J. Chem. Phys. 91(2), 1279–1286 (1989).
[Crossref]

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

J. Opt. (1)

J. H. Huang and R. Chang, “Theoretical investigation on the strong coupling between a molecule and a metallic nanosphere clad with a gain medium,” J. Opt. 16(1), 015005 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (2)

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. C. Yu, J. M. Liu, C. J. Jin, and X. H. Wang, “Plasmon-mediated resonance energy transfer by metallic nanorods,” Nanoscale Res. Lett. 8(1), 209 (2013).
[Crossref] [PubMed]

Nature (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

W. L. Barnes and P. Andrew, “Energy transfer under control,” Nature 400(6744), 505–506 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

F. Schleifenbaum, A. M. Kern, A. Konrad, and A. J. Meixner, “Dynamic control of Förster energy transfer in a photonic environment,” Phys. Chem. Chem. Phys. 16(25), 12812–12817 (2014).
[Crossref] [PubMed]

A. Konrad, A. L. Trost, S. Skandary, M. Hussels, A. J. Meixner, N. V. Karapetyan, and M. Brecht, “Manipulating the excitation transfer in Photosystem I using a Fabry-Perot metal resonator with optical subwavelength dimensions,” Phys. Chem. Chem. Phys. 16(13), 6175–6181 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

V. Karanikolas, C. A. Marocico, and A. L. Bradley, “Spontaneous emission and energy transfer rates near a coated metallic cylinder,” Phys. Rev. A 89(6), 063817 (2014).
[Crossref]

Phys. Rev. B (4)

V. N. Pustovit and T. V. Shahbazyan, “Resonance energy transfer near metal nanostructures mediated by surface plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B 85(11), 115429 (2012).
[Crossref]

D. M. Basko, F. Bassani, G. C. La Rocca, and V. M. Agranovich, “Electronic energy transfer in a microcavity,” Phys. Rev. B 62(23), 15962–15977 (2000).
[Crossref]

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

M. Hopmeier, W. Guss, M. Deussen, E. O. Gobel, and R. F. Mahrt, “Enhanced dipole-dipole interaction in a polymer microcavity,” Phys. Rev. Lett. 82(20), 4118–4121 (1999).
[Crossref]

Phys. Status Solidi (a) (1)

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Phys. Status Solidi (a) 190(2), 379–382 (2002).
[Crossref]

Plasmonics (2)

J. I. Gersten, “Fluorescence resonance energy transfer near thin films on surfaces,” Plasmonics 2(2), 65–77 (2007).
[Crossref]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice,” Plasmonics 5(4), 363–368 (2010).
[Crossref]

Sci. Rep. (1)

S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, “Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons,” Sci. Rep. 4, 4735 (2014).
[Crossref] [PubMed]

Science (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Other (3)

See, e.g. Refs. [15] and [25] for models of such distributions.

M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media (Cambridge, 2011).

For a comprehensive review, see the recent text by: I. L. Medintz and N. Hildebrandt, FRET - Förster Resonance Energy Transfer: From Theory to Applications (John Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configurations of pair of donor and acceptor in the vicinity of a gain-clad (a) metallic nanosphere (b) metallic nanocavity.
Fig. 2
Fig. 2 Enhancement factor ( ξ ) of FRET as a function of frequency ω for different gain level g and gain center frequency ω r . The inset in each subfigure is the enhancement factor versus k at frequency ω= ω r . Other parameter values are given in the text.
Fig. 3
Fig. 3 Enhancement factor ( ξ ) of FRET as a function of distance d for different gain level g and gain center frequency ω r . The radial position of D (A) is at 12.5nm + d (15.0nm + d). Other parameter values are the same as those for Fig. 2.
Fig. 4
Fig. 4 Enhancement factor ( ξ ) of FRET as a function of the outer radius b with inner radius fixed at a=9.0nm . Other parameters are given in the text.
Fig. 5
Fig. 5 (a) Decay rate of donor K D , (b) FRET rate K , and (c) FRET efficiency η as a function of gain level g for various frequency ω for D and A.
Fig. 6
Fig. 6 Enhancement factor ( ξ ) of FRET for a gain-clad cavity as a function of inner radius a with outer radius fixed at b=12.0nm . The radial position of D (A) is 6.0 (3.5) nm. The resonance frequency of D and A is at 0.45244 ω p .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

K(ω)= 9 c 4 8π σ A (ω) Γ D (ω) ω 4 | U(ω) | 2 ,
ξ= | U(ω) U 0 (ω) | 2 ,
U 0 (ω)= μ A · μ D | r A r D | 3 3 μ A ·( r A r D ) μ D ·( r A r D ) | r A r D | 5 ,
Φ = m [ G m o r 1 + ψ m D o ( r ) + ψ m A o ( r ) ] Y m ( θ , φ ) ,
Φ = m [ F m s r + G m s r 1 ] Y m ( θ , φ ) ,
Φ = m F m i r Y m ( θ , φ ) ,
G m o = b + 1 S 1 × ( ε o ε s ) [ ( + 1 ) ε s + ε i ] + ( ε s ε i ) [ ( + 1 ) ε s + ε o ] ( a / b ) 2 + 1 [ ε s + ( + 1 ) ε o ] [ ( + 1 ) ε s + ε i ] + ( + 1 ) ( ε o ε s ) ( ε s ε i ) ( a / b ) 2 + 1 ,
U = μ A · Φ ' | r = r A ,
Φ ' = m [ G m o r 1 + ψ m D o ( r ) ] Y m ( θ , φ ) ,
Φ = m G m o r 1 Y m ( θ , φ ) ,
Φ = m [ F m s r + G m s r 1 ] Y m ( θ , φ ) ,
Φ = m [ F m i r + ψ m D i ( r ) + ψ m A i ( r ) ] Y m ( θ , φ ) ,
F m i = ( + 1 ) a S 1 × ( ε i ε s ) [ ( + 1 ) ε o + ε s ] + ( ε s ε o ) [ ( + 1 ) ε i + ε s ] ( a / b ) 2 + 1 [ ε s + ( + 1 ) ε o ] [ ( + 1 ) ε s + ε i ] + ( + 1 ) ( ε o ε s ) ( ε s ε i ) ( a / b ) 2 + 1 ,
Φ ' = m [ F m i r + ψ m D i ( r ) ] Y m ( θ , φ ) ,
ε m = ε IB ω P 2 ω( ω+iγ ) ,
ε g = ε B + gΓ ω ω r +iΓ ,
η=K/( K D +K),
K D (ω)= Γ D (ω)[1+Im( E d )/(2 ω 3 ε B /3 c 3 )],
E d = l l (l+1) 2 r d 2l+2 α l b 2l+1 ,

Metrics