Abstract

We have recently reported a 980nm GaAs-based three terminal Pnp transistor-vertical-cavity surface-emitting laser (TVCSEL) operating at room temperature with optical power up to 1.8mW. However, the current gain β = ΔIcIb was near zero just before lasing and became negative after the lasing threshold. The main cause of the negative current gain was found to be a gradual and position-dependent forward-biasing (saturation) of the base-collector junction with increasing bias even before lasing threshold. In this article, detailed multi-physics device simulations are performed to better understand the device physics, and find ways to avoid the premature saturation of the base-collector junction. We have optimized the thickness of the base region as well as its doping concentration and the location of the quantum wells to ensure that the T-VCSEL is in the active mode throughout its range of operation. That is, the emitter-base junction is forward biased and base-collector junction is reversed biased for sweeping the excess charges out of the base region.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength

Mizuki Shirao, Takashi Sato, Noriaki Sato, Nobuhiko Nishiyama, and Shigehisa Arai
Opt. Express 20(4) 3983-3989 (2012)

Design and epitaxy of 1.5 μm InGaAsP-InP MQW material for a transistor laser

Zigang Duan, Wei Shi, Lukas Chrostowski, Xiaodong Huang, Ning Zhou, and Guangyue Chai
Opt. Express 18(2) 1501-1509 (2010)

Fabrication and characterization of deep ridge InGaAsP/InP light emitting transistors

Wenjuan Huo, Song Liang, Can Zhang, Shaoyang Tan, Liangshun Han, Hongyun Xie, Hongliang Zhu, and Wei Wang
Opt. Express 22(2) 1806-1814 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectrum 43 (2), 50–55 (2006).
    [Crossref]
  2. M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
    [Crossref]
  3. http://phys.org/news68731792.html http://www.aip.org/anniversary/pubs_research.html
  4. -H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: theory and experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
    [Crossref]
  5. J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
    [Crossref]
  6. Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
    [Crossref]
  7. M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
    [Crossref]
  8. H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
    [Crossref]
  9. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
    [Crossref]
  10. T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
    [Crossref]
  11. M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
    [Crossref]
  12. I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
    [Crossref]
  13. F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
    [Crossref]
  14. E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” IEEE Photon. Technol. Lett. 24(1), 4–6 (2012).
    [Crossref]
  15. B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modeling the effect of the feedback on the small signal modulation of the transistor laser,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver CO, Nov 7–11 (2010), paper WX4.
  16. H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
    [Crossref]
  17. A. M. Joshi, S. Datta, and A. Crawford, “Multilevel modulation formats push capacities beyond 100 Gbit/s,” Laser Focus World, 59–61 (2012).
  18. W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
    [Crossref]
  19. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
    [Crossref]
  20. H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
    [Crossref]
  21. A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, C. M. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio-over-fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
    [Crossref]
  22. P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
    [Crossref]
  23. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.
  24. W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
    [Crossref]
  25. M.K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photon. Technol. Lett. 24(15), 1346–1348 (2012).
    [Crossref]
  26. M.K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101(8), 081102 (2012).
    [Crossref]
  27. X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
    [Crossref]
  28. Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
    [Crossref]
  29. R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
    [Crossref]
  30. Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
    [Crossref]
  31. R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
    [Crossref]
  32. http://www.crosslight.com
  33. Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

2013 (3)

-H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: theory and experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

2012 (7)

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101(8), 081102 (2012).
[Crossref]

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” IEEE Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

2011 (3)

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

2010 (2)

2009 (4)

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
[Crossref]

2008 (3)

R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

2007 (1)

Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
[Crossref]

2006 (1)

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectrum 43 (2), 50–55 (2006).
[Crossref]

2005 (1)

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

1985 (1)

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

1980 (1)

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Akram, M. N.

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Akram, N.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Amann, C. M.

Arai, S.

M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Baks, C.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Bambery, R.

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

Bar-Chaim, N.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Benjamin, S.

Berggren, J.

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
[Crossref]

R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
[Crossref]

Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
[Crossref]

Chan, R.

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Chang-Hasnain, C. J.

Chen, P. C.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Chrostowski, L.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modeling the effect of the feedback on the small signal modulation of the transistor laser,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver CO, Nov 7–11 (2010), paper WX4.

Crawford, A.

A. M. Joshi, S. Datta, and A. Crawford, “Multilevel modulation formats push capacities beyond 100 Gbit/s,” Laser Focus World, 59–61 (2012).

Dainese, M.

R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
[Crossref]

Datta, S.

A. M. Joshi, S. Datta, and A. Crawford, “Multilevel modulation formats push capacities beyond 100 Gbit/s,” Laser Focus World, 59–61 (2012).

Faraji, B.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modeling the effect of the feedback on the small signal modulation of the transistor laser,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver CO, Nov 7–11 (2010), paper WX4.

Feng, M.

-H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: theory and experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” IEEE Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101(8), 081102 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectrum 43 (2), 50–55 (2006).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Fortusini, D.

Geen, M.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Graham, L.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Greenberg, M.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Gustavsson, J.S.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Haglund, E.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Hammar, M.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
[Crossref]

R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
[Crossref]

Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
[Crossref]

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Hedlund, C. R.

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Hofmann, W.

Holonyak, N.

-H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: theory and experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101(8), 081102 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectrum 43 (2), 50–55 (2006).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Iverson, E. W.

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” IEEE Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

Jaeger, N. A. F.

B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modeling the effect of the feedback on the small signal modulation of the transistor laser,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver CO, Nov 7–11 (2010), paper WX4.

James, A.

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

Joel, A.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Johnson, R.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Joshi, A. M.

A. M. Joshi, S. Datta, and A. Crawford, “Multilevel modulation formats push capacities beyond 100 Gbit/s,” Laser Focus World, 59–61 (2012).

Kaatuzian, H.

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

Kajiwara, T.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

Katz, J.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Kgel, B.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Kocot, C.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Landry, G.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Larsson, A.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Lawrence, R.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Leburton, J. P.

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

Lee, S.

M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Lestrade, M.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Li, Z. M.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Li, Z. Q.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

MacInnes, A.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Marcks von Würtemberg, R.

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
[Crossref]

R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
[Crossref]

Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
[Crossref]

Margalit, S.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Mori, Y.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

Ng’oma, A.

Nishiyama, N.

M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Parekh, D.

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Pulfrey, D. L.

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Safaisini, R.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Sasai, Y.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

Sauer, M.

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Serizawa, H.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

Shaw, E.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Shi, W.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Shibata, J.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

Shirao, M.

M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Taghavi, I.

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

Tan, F.

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

Tan, T.

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

Tatum, J.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

Then, H. W.

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

Then, -H. W.

-H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: theory and experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

Ury, I.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Walter, G.

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Westbergh, P.

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Wilt, D.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Wu, C. H.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

Wu, M.K.

M.K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101(8), 081102 (2012).
[Crossref]

Xiang, Y.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Yang, C.

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Yang, W.

Yariv, A.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Yu, X.

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
[Crossref]

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Yust, M.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Zabel, T.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Zhang, Z.

Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
[Crossref]

Appl. Phys. Lett. (14)

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a hetero-junction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Ury, D. Wilt, M. Yust, and A. Yariv, “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett. 37(2), 211 (1980).
[Crossref]

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/ laser transistor,” Appl. Phys. Lett. 47(7), 649 (1985).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101(8), 081102 (2012).
[Crossref]

Z. Zhang, R. Marcks von Würtemberg, J. Berggren, and M. Hammar, “Optical loss and interface morphology in AlGaAs/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 91(10), 101101 (2007).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and M. N. Akram, “Minority current distribution in In-GaAs/GaAs transistor-vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

Electron. Lett. (3)

R. Marcks von Würtemberg, J. Berggren, M. Dainese, and M. Hammar, “High-power InGaAs/GaAs 1.3-μm VCSELs based on a novel electrical confinement scheme,” Electron. Lett. 44(6), 414–416 (2008).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, N. Akram, W. Shi, and L. Chrostowski, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kgel, J.S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Shirao, S. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009)
[Crossref]

IEEE Photon. Technol. Lett. (3)

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” IEEE Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

M.K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

IEEE Spectrum (1)

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectrum 43 (2), 50–55 (2006).
[Crossref]

IET Optoelectron. (1)

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-μm VCSEL,” IET Optoelectron. 3(2), 112–121 (2009).
[Crossref]

J. Lightwave Technol. (1)

Opt. Quantum Electron. (1)

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Q. Li, Z. M. Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Proc. IEEE (1)

-H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: theory and experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

Other (6)

http://phys.org/news68731792.html http://www.aip.org/anniversary/pubs_research.html

B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modeling the effect of the feedback on the small signal modulation of the transistor laser,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver CO, Nov 7–11 (2010), paper WX4.

A. M. Joshi, S. Datta, and A. Crawford, “Multilevel modulation formats push capacities beyond 100 Gbit/s,” Laser Focus World, 59–61 (2012).

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s directly modulated 850nm VCSEL-based Optical Link,” in Proceedings of the IEEE Photonics Conf. 2012 (IPC2012), Post Deadline paper 1.5.

http://www.crosslight.com

Y. Xiang, C. R. Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” (submitted to Photon. Tech. Lett).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic cross-section of the TVCSEL.
Fig. 2
Fig. 2 Material gain spectrum (a); the peak material gain of a single QW (b); Modal gain spectrum of the three QWs at different bias currents during full device simulation (c).
Fig. 3
Fig. 3 Simulated (left column) and measured (right column) results of the fabricated TVC-SEL. Simulation and measurements done at fixed heat sink temperature 25°C.
Fig. 4
Fig. 4 Simulation results of the fabricated TVCSEL.
Fig. 5
Fig. 5 Simulation (left column) and measured (right column) results of the fabricated TVC-SEL.
Fig. 6
Fig. 6 Band diagram at the center of the TVCSEL at different bias currents.
Fig. 7
Fig. 7 Simulation results for the TVCSEL with 100nm n-doped layer below the QWs.
Fig. 8
Fig. 8 Simulation results for the TVCSEL with 100nm n-doped layer below the QWs.
Fig. 9
Fig. 9 Band diagram for the TVCSEL with 100nm n-doped layer below the QWs.
Fig. 10
Fig. 10 Simulation results for the TVCSEL with 200nm n-doped layer below the QWs.
Fig. 11
Fig. 11 Simulation results for the TVCSEL with 200nm n-doped layer below the QWs.
Fig. 12
Fig. 12 Band diagram for the TVCSEL with 200nm n-doped layer below the QWs.

Tables (1)

Tables Icon

Table 1 Simulation Parameters for PICS3D

Metrics