Abstract

We present a single arm low-coherence interferometer to directly measure the physical thickness and group refractive index of optically transparent samples having flat and parallel surfaces. The optical arrangement, resembling a common-path interferometer, is more compact and stable than the usual dual-arm low-coherence interferometer. It has been used to measure samples of Herasil 102 fused silica, Schott B270 Superwhite crown glass and borosilicate cover glass. The results obtained indicate uncertainties in the third decimal place for index values and thicknesses accurate to within 2 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of thermo-optic and thermal expansion coefficients with a single arm double interferometer

Jose Francisco Miras Domenegueti, Acacio A. Andrade, Viviane Pilla, and Sergio Carlos Zilio
Opt. Express 25(1) 313-319 (2017)

Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness

Hideki Maruyama, Shogo Inoue, Teruki Mitsuyama, Masato Ohmi, and Masamitsu Haruna
Appl. Opt. 41(7) 1315-1322 (2002)

Low coherence interferometry for central thickness measurement of rigid and soft contact lenses

I. Verrier, C. Veillas, and T. Lépine
Opt. Express 17(11) 9157-9170 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [Crossref] [PubMed]
  3. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
    [Crossref] [PubMed]
  4. X. Liu, X. Li, D. H. Kim, I. Ilev, and J. U. Kang, “Fiber-optic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6(12), 899–901 (2008).
    [Crossref]
  5. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
    [Crossref]
  6. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48(13), 2461–2467 (2009).
    [Crossref] [PubMed]
  7. P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
    [Crossref]
  8. G. D. Gillen and S. Guha, “Use of Michelson and Fabry-Perot interferometry for independent determination of the refractive index and physical thickness of wafers,” Appl. Opt. 44(3), 344–347 (2005).
    [Crossref] [PubMed]
  9. P. H. Tomlins, P. Woolliams, C. Hart, A. Beaumont, and M. Tedaldi, “Optical coherence refractometry,” Opt. Lett. 33(19), 2272–2274 (2008).
    [Crossref] [PubMed]
  10. S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express 16(8), 5516–5526 (2008).
    [Crossref] [PubMed]
  11. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [Crossref] [PubMed]
  12. J. L. Santos, A. P. Leite, and D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry-Perot cavity,” Appl. Opt. 31(34), 7361–7366 (1992).
    [Crossref] [PubMed]
  13. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [Crossref] [PubMed]

2009 (1)

2008 (3)

2005 (1)

2003 (1)

2001 (1)

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
[Crossref]

1998 (1)

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

1995 (1)

1992 (2)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

J. L. Santos, A. P. Leite, and D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry-Perot cavity,” Appl. Opt. 31(34), 7361–7366 (1992).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Beaumont, A.

Bouma, B. E.

Brezinski, M. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Choi, E. S.

Choi, H. Y.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gillen, G. D.

Gray, D. F.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guha, S.

Hart, C.

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hlubina, P.

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ilev, I.

Jackson, D. A.

Kane, D. J.

Kang, J. U.

Kim, D. H.

Kim, M. J.

Kim, S.

Lee, B. H.

Lee, C.

Leite, A. P.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

Liu, X.

Na, J.

Peterson, K. A.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Santos, J. L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sorin, W. V.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

Southern, J. F.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Tedaldi, M.

Tomlins, P. H.

Vakhtin, A. B.

Wood, W. R.

Woolliams, P.

Appl. Opt. (4)

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

J. Biomed. Opt. (2)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram of the one-arm interferometer used for the simultaneous measurement of thickness and group index of a plane-parallel transparent plate. Here, SLED is the super luminescent emitting diode, PS is the portable spectrometer, S is the sample and RF is a reference flat. (b) Expanded view of the measurement path.
Fig. 2
Fig. 2 (a) Spectrum of fused silica obtained with the single arm interferometer. (b) Optical path difference obtained from the spectrum shown in (a).
Fig. 3
Fig. 3 Spectrum of a B270 sample (a) and its Fourier transform showing the corresponding optical path differences (b).
Fig. 4
Fig. 4 (a) Spectrum of a borosilicate cover glass obtained with the single arm interferometer. (b) Optical path difference obtained by Fourier transforming the spectrum shown in (a).

Tables (1)

Tables Icon

Table 1 Refractive group index and physical thickness of the samples studied at 840 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( n g t) max = 1 4 ( λ 0 2 δλ )
Ι( λ ) 2RI 0 ( λ )[1-cosδ( λ )]
OPD FP = 2Δ= 2 n g t
OPD TB = 2Δ= 2( n g 1 )t
δz= c 2 = 2ln2 π ( λ 0 2 Δλ )

Metrics