Abstract

A Bragg grating fabrication method based on a phase-controlled interferometric approach with both coarse control and fine tuning of Bragg wavelength in the range of 1200-2200 nm is demonstrated by fabricating multiple Bragg reflectors in a single fiber device. With the fine tuning method, we achieved ~113 nm of FWHM bandwidth centered at ~1545 nm and ~174 nm of FWHM bandwidth centered at ~2005 nm, which were limited only by the size of the overlap of the interfering beams and by the Bragg wavelength. We used the wide range of the coarse wavelength control and the precision of the fine wavelength setting to determine the fiber Sellmeier coefficients with a mean squared error <3.5 × 10−9.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation

C. Sima, J. C. Gates, H. L. Rogers, P.L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith
Opt. Express 21(13) 15747-15754 (2013)

Fabrication of a tilted fiber Bragg grating with a designed reflection spectrum profile

Zhiyong Zhao, Shuang Zhang, Yongsen Yu, Zhongchang Zhuo, Jian Zhang, Wei Zheng, and Yushu Zhang
Opt. Lett. 29(3) 244-246 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. Yu. Stepanov and M. G. Sceats, “Controlled phase delay between beams for writing Bragg gratings,” Priority data: May 29, 1998 [AU] PP3816, US Patent 7,018,745 (2006).
  2. D. Yu. Stepanov and S. Surve, “Fabrication of 1D and 2D grating structures,” in Optical Fiber Communication Conference and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF7.
    [Crossref]
  3. M. Gagné, L. Bojor, R. Maciejko, and R. Kashyap, “Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry,” Opt. Express 16(26), 21550–21557 (2008).
    [Crossref] [PubMed]
  4. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
    [Crossref] [PubMed]
  5. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  6. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
    [Crossref]
  7. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Proceedings of Photosensitivity and Quadratic Nonlinearity in Glass Waveguides (Fundamentals and Applications), Portland, Oregon, September 9–11, 1995, posdeadline paper PD1.
  8. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
    [Crossref]
  9. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
    [Crossref]
  10. J. F. Brennan III and D. L. LaBrake, “Realization of >10-m-long chirped fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, T. Erdogan, E. Friebele, and R. Kashyap, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper BB2.
  11. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  12. S. van Rij and P. J. Gilling, “In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new ‘gold standard’,” Curr. Urol. Rep. 13(6), 427–432 (2012).
    [Crossref] [PubMed]
  13. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 um laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal, ed. (InTech, 2010).
  14. A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fibre laser,” in Conference on Lasers and Electro Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1M.1.
    [Crossref]
  15. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 um Tm-doped silica fibre laser pumped at 1.57 um,” Electron. Lett. 30(3), 220–221 (1994).
    [Crossref]
  16. J. M. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a two-micron thulium fiber laser,” in Conference on Lasers and Electro Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW1N.2.
    [Crossref]
  17. R. S. Quimby and M. Saad, “High power mid-IR Dy:fluoroindate fiber laser with cascade lasing,” in Frontiers in Optics 2012/Laser Science XXVIII, (Optical Society of America, 2012), paper FW4D.3.
  18. D. Yu. Stepanov and L. Corena, “Grating writing with 1000 nm of wavelength control,” in Proceedings of Australian and New Zealand Conference on Optics and Photonics (ANZCOP 2013), Perth, Australia, December 8–11, 2013, paper Mo3.5.
  19. R. I. Laming and M. Ibsen, “Fabrication of optical waveguide gratings,” Priority data: Oct 24, 1997 [GB] 9722550, US Patent 6,549,705 (2003).
  20. D. Yu. Stepanov, “Fabrication of large grating structures,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2010), paper JThA47.
  21. H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Novel technique for measuring dispersion and detuning of a UV written silica-on-silicon waveguide,” in Proceedings of Photon 10 Conference, Southampton, GB, 23–26 Aug 2010.
  22. H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
    [Crossref]
  23. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
    [Crossref]
  24. A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
    [Crossref]

2013 (1)

2012 (2)

S. van Rij and P. J. Gilling, “In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new ‘gold standard’,” Curr. Urol. Rep. 13(6), 427–432 (2012).
[Crossref] [PubMed]

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
[Crossref]

2008 (1)

2003 (1)

A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

1998 (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

1997 (2)

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

1995 (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

1994 (1)

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 um Tm-doped silica fibre laser pumped at 1.57 um,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

1989 (1)

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Asseh, A.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Bojor, L.

Buryak, A. V.

A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Durkin, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Gagné, M.

Gates, J. C.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
[Crossref]

Gilling, P. J.

S. van Rij and P. J. Gilling, “In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new ‘gold standard’,” Curr. Urol. Rep. 13(6), 427–432 (2012).
[Crossref] [PubMed]

Glenn, W. H.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Holmes, C.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
[Crossref]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Kashyap, R.

Kolossovski, K. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

Komukai, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 um Tm-doped silica fibre laser pumped at 1.57 um,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Maciejko, R.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Meltz, G.

Mennea, P. L.

Miyajima, Y.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 um Tm-doped silica fibre laser pumped at 1.57 um,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

Morey, W. W.

Rogers, H. L.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
[Crossref]

Sahlgren, B. E.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Sandgren, S.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Sima, C.

Smith, P. G. R.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
[Crossref]

Stepanov, D. Yu.

A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

Storoy, H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Stubbe, R. A. H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

van Rij, S.

S. van Rij and P. J. Gilling, “In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new ‘gold standard’,” Curr. Urol. Rep. 13(6), 427–432 (2012).
[Crossref] [PubMed]

Yamamoto, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 um Tm-doped silica fibre laser pumped at 1.57 um,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

Zervas, M. N.

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Curr. Urol. Rep. (1)

S. van Rij and P. J. Gilling, “In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new ‘gold standard’,” Curr. Urol. Rep. 13(6), 427–432 (2012).
[Crossref] [PubMed]

Electron. Lett. (3)

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 um Tm-doped silica fibre laser pumped at 1.57 um,” Electron. Lett. 30(3), 220–221 (1994).
[Crossref]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

IEEE Photon. J. (1)

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photon. J. 4(2), 310–316 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

J. Lightwave Technol. (1)

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (12)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 um laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal, ed. (InTech, 2010).

A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fibre laser,” in Conference on Lasers and Electro Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1M.1.
[Crossref]

J. M. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a two-micron thulium fiber laser,” in Conference on Lasers and Electro Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW1N.2.
[Crossref]

R. S. Quimby and M. Saad, “High power mid-IR Dy:fluoroindate fiber laser with cascade lasing,” in Frontiers in Optics 2012/Laser Science XXVIII, (Optical Society of America, 2012), paper FW4D.3.

D. Yu. Stepanov and L. Corena, “Grating writing with 1000 nm of wavelength control,” in Proceedings of Australian and New Zealand Conference on Optics and Photonics (ANZCOP 2013), Perth, Australia, December 8–11, 2013, paper Mo3.5.

R. I. Laming and M. Ibsen, “Fabrication of optical waveguide gratings,” Priority data: Oct 24, 1997 [GB] 9722550, US Patent 6,549,705 (2003).

D. Yu. Stepanov, “Fabrication of large grating structures,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2010), paper JThA47.

H. L. Rogers, J. C. Gates, and P. G. R. Smith, “Novel technique for measuring dispersion and detuning of a UV written silica-on-silicon waveguide,” in Proceedings of Photon 10 Conference, Southampton, GB, 23–26 Aug 2010.

D. Yu. Stepanov and M. G. Sceats, “Controlled phase delay between beams for writing Bragg gratings,” Priority data: May 29, 1998 [AU] PP3816, US Patent 7,018,745 (2006).

D. Yu. Stepanov and S. Surve, “Fabrication of 1D and 2D grating structures,” in Optical Fiber Communication Conference and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF7.
[Crossref]

J. F. Brennan III and D. L. LaBrake, “Realization of >10-m-long chirped fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, T. Erdogan, E. Friebele, and R. Kashyap, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper BB2.

R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Proceedings of Photosensitivity and Quadratic Nonlinearity in Glass Waveguides (Fundamentals and Applications), Portland, Oregon, September 9–11, 1995, posdeadline paper PD1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of fabricating (a) short and (b) long wavelength gratings. As the incoming beams are parallel, the beam overlap in the focal plane of the lens remains on the fiber core. Fine wavelength tuning is achieved by detuning the frequency shift from optimal ω1ω2 and ω'1ω'2 respectively.
Fig. 2
Fig. 2 Effect of apodization due to the frequency detuning calculated in accordance with Eq. (8) for gratings detuned from 1550 nm (solid) and 2100 nm (dash) when using 6 um wide beam overlap.
Fig. 3
Fig. 3 Measured values of the effective refractive index of the Nufern GF3 fiber and the fit using the Sellmeier coefficients in Table 1.
Fig. 4
Fig. 4 Transmission spectra of the multiple gratings, produced in a single piece of fiber using the coarse wavelength control method shown in Fig. 1, are ~50 nm spaced over 1000 nm of the wavelength range. The insets show 6 nm spans of the transmission spectra of the gratings centered at 2045 nm (run 1) and 1500 nm (run 2).
Fig. 5
Fig. 5 Transmission spectrum of the grating comb produced in a single piece of fiber using the fine wavelength tuning method described by Eq. (3). Dashed line represents transmission levels calculated from a Gaussian fit (8) to the refractive index modulation shown in Fig. 7. The inset shows the details of the comb design used as the phase modulation waveform.
Fig. 6
Fig. 6 Reflection spectrum of the grating comb aligned with the 100 GHz ITU grid and centered at 193.3 THz. The five-channel grating was produced using the efficient sampling design shown in the inset (apodization profile is normalized to the sinc-sampling peak).
Fig. 7
Fig. 7 (a) Refractive index modulation amplitude and (b) wavelength error versus 1000 nm of coarse wavelength control by moving the interfering beams; and within ΔλFWHM ≈113 nm at 1545 nm and ΔλFWHM ≈174 nm at 2005 nm by detuning from the frequency shift described by Eq. (1).
Fig. 8
Fig. 8 400 um diameter fiber with 25 um core under microscopic examination. The bright line in the center is the luminescence in the Ge-doped fiber core caused by overlapping interfering UV beams set to produce a 2100 nm Bragg grating. The estimated size of the overlap is ~6 um.
Fig. 9
Fig. 9 Traces of UV-induced luminescence in the Ge-doped core of the large core diameter fiber by either left or right or both beams when the grating writing system was coarse tuned close to the extremes of the wavelength range at 1300 nm and 2100 nm. The UV beams are incident onto the fiber core from the bottom of the figure and are propagating up.

Tables (1)

Tables Icon

Table 1 Sellmeier Coefficients for Nufern GF3 Fiber Calculated from Measured Grating Wavelengths

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ω 1 ω 2 = 2π Λ IP v f ,
ψ 1 ( t ) ψ 2 ( t )= 0 t ( ω 1 ω 2 )dt = 2π Λ IP v f t.
Λ= 2π v f ω 1 ω 2 +Ω ,
Ψ( t )= 0 t Ωdt .
Δ n ac ( Ω )=Δ n dc exp[ 1 4ln2 ( D 2 v f Ω ) 2 ],
Δn( z )=Δ n dc +Δ n ac ( z )cos[ 2π Λ( z ) ( z z 0 ) ],
λ 0 =2n( λ 0 ) Λ IP
Δ n ac ( λ 0 ,Δλ,D )=Δ n dc exp{ 1 ln2 [ πD( n( λ 0 +Δλ ) λ 0 +Δλ n( λ 0 ) λ 0 ) ] 2 },
Δ n ac ( λ 0 ,Δλ,D )Δ n dc exp[ 1 ln2 ( πnD Δλ λ 0 2 ) 2 ].
Δ λ FWHM 2ln2 π λ 0 2 nD
λ n λ UV NA ,
φ( z,t )=Φ( z ){ 1, mT<t( m+ 1 2 )T +1, ( m+ 1 2 )T<t( m+1 )T ,
Δ n ac ( z )=Δ n ac ( Ω( z ) )cosΦ( z ),
n 2 ( λ )1= i λ 2 B i λ 2 λ i 2 .

Metrics