Abstract

In this paper, we first experimentally demonstrate a 550 Mbit/s real-time visible light communication (VLC) system based on nonreturn-to-zero on-off keying (NRZ-OOK) modulation of a commercial phosphorescent white light LED. The 3-dB modulation bandwidth of such devices is only a few megahertz. We proposed an analog pre-emphasis circuit based on NPN transistors and an active post-equalization circuit based on an amplifier to enhance the 3-dB bandwidth of VLC link. Utilizing our proposed pre-emphasis and post-equalization circuits, the 3-dB bandwidth of VLC link could be extended from 3 to 233 MHz with blue-filter, to the best of our knowledge, which is the highest ever achieved in VLC systems reported. The achieved data rate was 550 Mbit/s at the distance of 60 cm and the resultant bit-error-ratio (BER) was 2.6 × 10−9. When the VLC link operated at 160 cm, the data rate was 480 Mbit/s with 2.3 × 10−7 of BER. Our proposed VLC system is a good solution for high-speed low-complexity application.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver

Xingxing Huang, Zhixin Wang, Jianyang Shi, Yiguang Wang, and Nan Chi
Opt. Express 23(17) 22034-22042 (2015)

Adaptive 84.44−190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance

C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu
Opt. Express 22(8) 9783-9788 (2014)

Real-time white-light phosphor-LED visible light communication (VLC) with compact size

Chien-Hung Yeh, Yen-Liang Liu, and Chi-Wai Chow
Opt. Express 21(22) 26192-26197 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
    [Crossref]
  2. J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-Speed data transmission with phosphorescent white-Light LEDs,” in Proceedings of European Conference on Optical Communication (ECOC) (2007).
  3. H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).
  4. H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
  5. N. Fujimoto and H. Mochizuki, “477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” in Proceedings of OFC Collocated National Fiber Optic Engineers Conference (OFC/NFOEC) (2013).
    [Crossref]
  6. C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
    [Crossref] [PubMed]
  7. H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
  8. H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
    [Crossref]
  9. C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
    [Crossref]
  10. T. Kishi, H. Tanaka, Y. Umeda, and O. Takyu, “A high-speed driver that sweeps out remaining carriers for visible light communications,” J. Lightwave Technol. 32(2), 239–249 (2014).
    [Crossref]
  11. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  12. A. H. Azhar, T. A. Tran, and D. O’brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
    [Crossref]
  13. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  14. C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
    [Crossref]
  15. N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red–green–blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett. 12(1), 010605 (2014).
  16. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  17. C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu, “Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance,” Opt. Express 22(8), 9783–9788 (2014).
    [Crossref] [PubMed]
  18. J. Y. Sung, C. W. Chow, and C. H. Yeh, “Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
    [Crossref] [PubMed]
  19. E. Fred Schubert, Light-Emitting Diodes (Cambridge University, 2003).
  20. S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
    [Crossref]
  21. D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]

2014 (6)

2013 (6)

S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

A. H. Azhar, T. A. Tran, and D. O’brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

2009 (1)

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

2008 (1)

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

Azhar, A. H.

A. H. Azhar, T. A. Tran, and D. O’brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Buttner, A.

Chen, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, H. Y.

Chen, J.

Chen, X.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chi, N.

Choudhury, P.

Chow, C. W.

C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu, “Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance,” Opt. Express 22(8), 9783–9788 (2014).
[Crossref] [PubMed]

J. Y. Sung, C. W. Chow, and C. H. Yeh, “Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
[Crossref] [PubMed]

C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
[Crossref] [PubMed]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Ciaramella, E.

Cogman, A.

Corsini, R.

Cossu, G.

Dawson, M. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
[Crossref]

del Rosal, L. F.

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
[Crossref]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Henderson, R. K.

Huang, B.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Huang, P. Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Huang, X.

Jung, D.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
[Crossref]

Khalid, A. M.

Kishi, T.

Kottke, C.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

Langer, K. D.

Langer, K.-D.

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

Lee, K.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Le-Minh, H.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Li, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Liu, Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

Liu, Y. F.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

Liu, Y. L.

Lu, X.

Massoubre, D.

McKendry, J. J. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
[Crossref]

Nerreter, S.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

A. H. Azhar, T. A. Tran, and D. O’brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

O’Brien, D. C.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Oh, Y.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Shang, H.

Sung, J. Y.

Takyu, O.

Tanaka, H.

Tang, D.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Tran, T. A.

A. H. Azhar, T. A. Tran, and D. O’brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Umeda, Y.

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Vucic, J.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

Walewski, J.

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

Walewski, J. W.

Wang, Y.

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Zhang, S. Watson, J. J. D. Mckendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
[Crossref]

Won, E. T.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

Yeh, C. H.

J. Y. Sung, C. W. Chow, and C. H. Yeh, “Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
[Crossref] [PubMed]

C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu, “Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance,” Opt. Express 22(8), 9783–9788 (2014).
[Crossref] [PubMed]

C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Yu, J.

Zeng, L.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

Zhang, S.

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (5)

A. H. Azhar, T. A. Tran, and D. O’brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photon. Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, and Y. Liu, “Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM,” Opt. Commun. 292, 49–52 (2013).
[Crossref]

Opt. Express (5)

Opt. Quantum Electron. (1)

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Other (5)

N. Fujimoto and H. Mochizuki, “477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” in Proceedings of OFC Collocated National Fiber Optic Engineers Conference (OFC/NFOEC) (2013).
[Crossref]

K.-D. Langer, J. Vucic, C. Kottke, L. F. del Rosal, S. Nerreter, and J. Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white light LEDs, ” in Proceedings of International Conference on Transparent Optical Networks (ICTON) (2009), pp. 90–95.
[Crossref]

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-Speed data transmission with phosphorescent white-Light LEDs,” in Proceedings of European Conference on Optical Communication (ECOC) (2007).

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of European Conference on Optical Communication (ECOC) (2008).

E. Fred Schubert, Light-Emitting Diodes (Cambridge University, 2003).

Supplementary Material (1)

» Media 1: MOV (82112 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) VLC pre-emphasis circuit using wideband NPN transistors. Q1and Q2: BFR520; Q3: BFR540. (b) Designed pre-emphasis circuit module.
Fig. 2
Fig. 2 (a) VLC post-equalization circuit. (b) Optical receiver module with post-equalization circuit designed.
Fig. 3
Fig. 3 (a) Experimental setup of phosphor-LED VLC system. TIA: trans-impedance amplifier; PD: photodiode. (b) VLC experimental link (Media 1).
Fig. 4
Fig. 4 (a) EOE system frequency response of blue light, white light, yellow component and normalized response of pre-emphasis circuit. (b) Frequency response of pre-emphasis circuit with different cases. (c) EOE system frequency response with different cases of pre-emphasis circuit and under a certain value 3 pF of post-equalization capacitor. (d) BER versus transmission data rate with different cases of pre-emphasis circuit and under a certain value 3 pF of post-equalization capacitor. BER below 10−10 is truncated to this threshold. Different cases for (a), (b) and (c) include R5 = 10 Ω, C2 = 22 pF, R10 = 10 Ω and C4 = 100 pF; R5 = 10 Ω, C2 = 10 pF, R10 = 10 Ω and C4 = 100 pF; R5 = 10 Ω, C2 = 27 pF, R10 = 10 Ω and C4 = 100 pF and R5 = 10 Ω, C2 = 22 pF, R10 = 10 Ω and C4 = 120pF. All the measurements of (a), (c) and (d) are at the distance of 60 cm.
Fig. 5
Fig. 5 (a) EOE system frequency response with different values of post-equalization capacitor C1 and C2 (the values of C1 and C2 are equivalent with 0 pF, 3 pF and 5 pF), under the certain key parameters of pre-emphasis circuit (R5 = 10 Ω, C2 = 22 pF, R10 = 10 Ω and C4 = 100 pF). (b) BER versus transmission data rate with different values of post-equalization capacitor C1 and C2 (the values of C1 and C2 are equivalent with 0 pF, 3 pF and 5 pF), under the certain key parameters of pre-emphasis circuit (R5 = 10 Ω, C2 = 22 pF, R10 = 10 Ω and C4 = 100 pF). (c) BER versus transmission data rate (without pre-emphasis; with pre-emphasis and no post-equalization; with pre-emphasis, post-equalization and no LA; with pre-emphasis, post-equalization and LA). BER below 10−10 is truncated to this threshold. Inset: measured waveform at 540Mbit/s. All the measurements are at the distance of 60 cm.
Fig. 6
Fig. 6 (a) BER versus received blue optical power at different data rates (100 Mb/s, 200 Mb/s, 300 Mb/s, 400 Mb/s and 500 Mb/s). All the measurements are at the distance of 60 cm. (b) measured transmission data rate versus radial distance r (cm). (c) measured received optical power versus radial distance r (cm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A v1 (jω)= R 3 R 4 //( R 5 + 1 jω C 2 ) = R 3 R 4 (1+ R 4 R 5 (1+ 1 jω R 5 C 2 ) )
| A v1 ( j ω ) |= R 3 R 4 (1+ ω R 4 C 2 1+ ω 2 R 5 2 C 2 2 )
ω 3dB 0.414 C 2 R 4 2 0.172 R 5 2
ω 3dB 0.414 C 2 R 4
H A (jω)= R F 1 R 1 //( 1 jω C 1 ) = R F 1 R 1 (1+jω R 1 C 1 )
| H A (jω)|= R F 1 R 1 1+ ω 2 R 1 2 C 1 2
ω 3dB = 1 R 1 C 1
P loss ( V B1 R 4 + V B2 R 9 + V B3 R 14 )×10V

Metrics