Abstract

The geometric optics principles are used to develop a unidirectional transmission cloak for hiding objects with dimensions substantially exceeding the incident radiation wavelengths. Invisibility of both the object and the cloak is achieved without metamaterials, so that significant widths of the cloaking bands are provided. For the preservation of wave phases, the λ-multiple delays of waves passing through the cloak are realized. Suppression of reflection losses is achieved by using half-λ multiple thicknesses of optical elements. Due to periodicity of phase delay and reflection suppression conditions, the cloak demonstrates efficient multiband performance confirmed by full-wave simulations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amplitude-only, passive, broadband, optical spatial cloaking of very large objects

John C. Howell, J. Benjamin Howell, and Joseph S. Choi
Appl. Opt. 53(9) 1958-1963 (2014)

Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface

Elnaz Shokati, Nosrat Granpayeh, and Mohammad Danaeifar
Appl. Opt. 56(11) 3053-3058 (2017)

Photorealistic rendering of unidirectional free-space invisibility cloaks

Jad C. Halimeh and Martin Wegener
Opt. Express 21(8) 9457-9472 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Houdin and J. Eugène, in The Secrets of Stage Conjuring (G. Routledge and Sons, 1900).
  2. H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Rep. 2, 255 (2012).
    [Crossref] [PubMed]
  3. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
    [Crossref] [PubMed]
  4. J. C. Howell and J. B. Howell, “Simple, broadband, optical spatial cloaking of very large objects,” arXiv:1306.0863v3 (2013).
  5. T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
    [Crossref]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  7. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
    [Crossref] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  9. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  10. D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
    [Crossref] [PubMed]
  11. E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
    [Crossref]
  12. X. Wang, F. Chen, S. Hook, and E. Semouchkina, “Microwave cloaking by all-dielectric metamaterials,” in Proceedings of IEEE International Symposium on Antennas and Propagation, (IEEE, 2011), pp. 2876–2878.
  13. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
    [Crossref] [PubMed]
  14. B. Zhang, H. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagnetics Res. 97, 407–416 (2009).
    [Crossref]
  15. H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
    [Crossref] [PubMed]
  16. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
    [Crossref]
  17. K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19(13), 12619–12627 (2011).
    [Crossref] [PubMed]
  18. E. Semouchkina, “Formation of coherent multi-element resonance states in metamaterials,” in Metamaterial, X. Y. Jiang, ed. (InTech, 2012), Chap. 4.
  19. F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
    [Crossref]
  20. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  21. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  22. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [Crossref] [PubMed]
  23. Y. Urzhumov and D. R. Smith, “Low-loss directional cloaks without superluminal velocity or magnetic response,” Opt. Lett. 37(21), 4471–4473 (2012).
    [Crossref] [PubMed]
  24. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
    [Crossref] [PubMed]
  25. G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
    [Crossref]
  26. X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
    [Crossref]
  27. Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
    [Crossref]
  28. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref] [PubMed]
  29. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  30. R. Duan, E. Semouchkina, and R. Pandey, “Gradient index transmission cloak composed of arrays of dielectric elements,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, (IEEE, 2012), pp. 1–2.
    [Crossref]

2013 (4)

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[Crossref]

2012 (5)

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Rep. 2, 255 (2012).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Y. Urzhumov and D. R. Smith, “Low-loss directional cloaks without superluminal velocity or magnetic response,” Opt. Lett. 37(21), 4471–4473 (2012).
[Crossref] [PubMed]

2011 (4)

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19(13), 12619–12627 (2011).
[Crossref] [PubMed]

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

2010 (2)

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
[Crossref]

2009 (2)

B. Zhang, H. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagnetics Res. 97, 407–416 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

2008 (3)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
[Crossref] [PubMed]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (4)

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

Averitt, R. D.

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Burger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chen, F.

X. Wang, F. Chen, S. Hook, and E. Semouchkina, “Microwave cloaking by all-dielectric metamaterials,” in Proceedings of IEEE International Symposium on Antennas and Propagation, (IEEE, 2011), pp. 2876–2878.

Chen, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Rep. 2, 255 (2012).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, H. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagnetics Res. 97, 407–416 (2009).
[Crossref]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Cheng, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Croënne, C.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Duan, R.

R. Duan, E. Semouchkina, and R. Pandey, “Gradient index transmission cloak composed of arrays of dielectric elements,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, (IEEE, 2012), pp. 1–2.
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Fan, K.

Fujii, G.

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

Gaillot, D. P.

Hashemi, H.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

Hook, S.

X. Wang, F. Chen, S. Hook, and E. Semouchkina, “Microwave cloaking by all-dielectric metamaterials,” in Proceedings of IEEE International Symposium on Antennas and Propagation, (IEEE, 2011), pp. 2876–2878.

Huang, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

Johnson, S. G.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, L.

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Kundtz, N. B.

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
[Crossref]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Linden, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Lippens, D.

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
[Crossref] [PubMed]

Liu, D.

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Mizuno, M.

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moser, H. O.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Pandey, R.

R. Duan, E. Semouchkina, and R. Pandey, “Gradient index transmission cloak composed of arrays of dielectric elements,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, (IEEE, 2012), pp. 1–2.
[Crossref]

Pantano, C.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
[Crossref]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
[Crossref]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

Ren, X.

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

Sadaune, V.

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Semouchkin, G. B.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
[Crossref]

Semouchkina, E.

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[Crossref]

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
[Crossref]

X. Wang, F. Chen, S. Hook, and E. Semouchkina, “Microwave cloaking by all-dielectric metamaterials,” in Proceedings of IEEE International Symposium on Antennas and Propagation, (IEEE, 2011), pp. 2876–2878.

R. Duan, E. Semouchkina, and R. Pandey, “Gradient index transmission cloak composed of arrays of dielectric elements,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, (IEEE, 2012), pp. 1–2.
[Crossref]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shen, L.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Shen, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Y. Urzhumov and D. R. Smith, “Low-loss directional cloaks without superluminal velocity or magnetic response,” Opt. Lett. 37(21), 4471–4473 (2012).
[Crossref] [PubMed]

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
[Crossref]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strikwerda, A. C.

Tao, H.

Ueta, T.

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

Urzhumov, Y.

Urzhumov, Y. A.

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Wang, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[Crossref]

X. Wang, F. Chen, S. Hook, and E. Semouchkina, “Microwave cloaking by all-dielectric metamaterials,” in Proceedings of IEEE International Symposium on Antennas and Propagation, (IEEE, 2011), pp. 2876–2878.

Watanabe, H.

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

Wegener, M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Werner, D. H.

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
[Crossref]

Wu, B. I.

B. Zhang, H. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagnetics Res. 97, 407–416 (2009).
[Crossref]

Xi, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, Y.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Yamada, T.

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

Yu, F.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

Zhang, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

B. Zhang, H. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagnetics Res. 97, 407–416 (2009).
[Crossref]

Zhang, F.

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, R.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, X.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express 19(13), 12619–12627 (2011).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhao, Q.

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

Zhao, R.

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

Zheludev, N. I.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Zheng, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Rep. 2, 255 (2012).
[Crossref] [PubMed]

Zhou, J.

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

Appl. Phys. Lett. (3)

E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, “An infrared invisibility cloak composed of glass,” Appl. Phys. Lett. 96(23), 233503 (2010).
[Crossref]

G. Fujii, H. Watanabe, T. Yamada, T. Ueta, and M. Mizuno, “Level set based topology optimization for optical cloaks,” Appl. Phys. Lett. 102(25), 251106 (2013).
[Crossref]

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[Crossref]

J. Opt. (1)

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt. 13(2), 024002 (2011).
[Crossref]

Laser Phys. Lett. (1)

T. Zhai, X. Ren, R. Zhao, J. Zhou, and D. Liu, “An effective broadband optical ‘cloak’ without metamaterials,” Laser Phys. Lett. 10(6), 066002 (2013).
[Crossref]

Nat. Commun. (2)

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (5)

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, “Coupling effect for dielectric metamaterial dimer,” Prog. Electromagn. Res. 132, 587–601 (2012).
[Crossref]

Prog. Electromagnetics Res. (1)

B. Zhang, H. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagnetics Res. 97, 407–416 (2009).
[Crossref]

Sci. Rep. (1)

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Rep. 2, 255 (2012).
[Crossref] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Other (5)

R. Houdin and J. Eugène, in The Secrets of Stage Conjuring (G. Routledge and Sons, 1900).

J. C. Howell and J. B. Howell, “Simple, broadband, optical spatial cloaking of very large objects,” arXiv:1306.0863v3 (2013).

E. Semouchkina, “Formation of coherent multi-element resonance states in metamaterials,” in Metamaterial, X. Y. Jiang, ed. (InTech, 2012), Chap. 4.

X. Wang, F. Chen, S. Hook, and E. Semouchkina, “Microwave cloaking by all-dielectric metamaterials,” in Proceedings of IEEE International Symposium on Antennas and Propagation, (IEEE, 2011), pp. 2876–2878.

R. Duan, E. Semouchkina, and R. Pandey, “Gradient index transmission cloak composed of arrays of dielectric elements,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, (IEEE, 2012), pp. 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cross-section of the optical cloaking system with x-oriented optical axis presented by the dashed line passing through the origin of the coordinate system. Boundaries from x = 0 to x = L at y = ± Acv are the boundaries between free space and cloak. The dark zone in the center of the cloaking system has a shuttle like cross-section and contains an extended in z-direction cylindrical object to be hidden. The lines with arrows present the expected trajectories of the beams from left to right.
Fig. 2
Fig. 2 Snap-shots of wave propagation represented by H-field patterns in xy-plane at 8 GHz through: (a) cloaked PEC shell with the cross-section defined by the boundaries of the dark zone; (b) bare round rod with the radius of the cross-section equal to H; (c) bare PEC shell; and (d) cloaked PEC shell without PEC boundaries at y = ± Acv. The fields are normalized by the amplitude of the incident wave.
Fig. 3
Fig. 3 Simulated TSCW spectra for the cloaked PEC shell with (solid curves) and without (dotted curves) the employment of the PEC boundaries at y = ± Acv in comparison with the spectra for the bare round PEC rod (dashed curves) and for the bare PEC shell (dashed-dotted curves). Five cycling cloaking bands are demonstrated.
Fig. 4
Fig. 4 Simulated H-field patterns for wave passing the metal shell surrounded by the cloak without PEC at y = ± Acv at: (a) 8 GHz (odd band) and (b) 16 GHz (even band).

Tables (1)

Tables Icon

Table 1 Calculated Parameters of the Cloak

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f cv = R cv /(n1)and f cc = R cc /(n1).
f cc = f cv D 1 ,
A cc = A cv H.
f cv / A cv = D 1 /H.
d cv = R cv R cv 2 A cv 2 and d cc = R cc R cc 2 A cc 2 .
2 d cv (n1)=N λ 0 ,
d cv =[M/(2n)] λ 0 ,
n=1+N/P,
d cv =[ ( MN )/2 ] λ 0 =(P/2) λ 0 .
Δ D max cloak =[ (n1)( d cv d cc ) ][ ( D 1 2 + H 2 ) 1/2 D 1 ].

Metrics